日本―ドイツ 国際共同研究「オプティクス・フォトニクス」 平成 3 0 年度 年次報告書		
研究課題名(和文)	超解像X線位相イメージングの開発	
研究課題名(英文)	Development of hyper-resolution X-ray phase imaging	
日本側研究代表者氏名	百生 敦	
所属・役職	東北大学多元物質科学研究所・教授	
研究期間	平成30年10月1日~令和3年9月30日	

1. 日本側の研究実施体制

氏名	所属機関・部局・役職	役割
百生 敦	東北大・多元研・教授	全体取り纏め、装置開発
Luis Rodrigues	東北大・多元研・研究員	装置開発、実験
呉 彦霖	東北大・多元研・助教	装置開発、実験
川上 博己	浜松ホトニクス・電子管技術 部・主任部員	X線源開発
岡田 知幸	浜松ホトニクス・電子管技術 部・グループ長	X線源開発
古木 裕記	浜松ホトニクス・電子管第5製 造部	X線源開発
服部 真也	浜松ホトニクス・電子管技術部	X線源開発
水野 圭三	浜松ホトニクス・電子管第5製 造部・専門部員	X線源開発
早川理志	浜松ホトニクス・電子管第5製 造部・部員	X線源開発
鈴木 直伸	浜松ホトニクス・電子管第5製 造部・専門部員	X線源開発

2. 日本側研究チームの研究目標及び計画概要

超解像 X 線位相イメージング装置の基本構成を光学シミュレーター(既存)も活用して決定し、それに用いる X 線格子に必要な仕様をドイツ側に伝え、その製作を開始させる。また、超解像 X 線位相イメージング装置に使用するマイクロフォーカス X 線源の仕様を確定し、当該装置の光学定盤、および、格子と試料を配置する精密ステージの導入と組み上げを行う。光学定盤上全体を覆うように設置する内部空調を兼ねた X 線遮蔽ボックスは、その設計までを本年度に行う。

3. 日本側研究チームの実施概要

浜松ホトニクスが供給する X 線源のスペックによるマイクロフォーカス X 線源からのコーンビーム仕様を考慮し、超解像 X 線位相イメージングに必要な格子として三角位相格子が適していると判断し、三角位相格子が形成する X 線波動場のシミュレーションを行ったうえで、具体的な設計を決定した。この設計情報をドイツ側に送り、先方のプロセス条件を鑑みた微修正を経て、格子製作を開始させることができた。また、マイクロフォーカス X 線源を用いた超解像 X 線位相イメージング装置の設計を開始し、格子配置のための精密ステージ等の仕様決定と調達を行った。マイクロフォーカス X 線源を東北大の装置設置予定の実験室に運び込み、 X 線発生を除く運転状況(真空排気、電源供給、冷却(空冷 & 水冷))のもとで、振動等の影響を検査した。 X 線遮蔽室の設計までは終了し、令和元年度に調達後、 X 線を用いた試験を開始することとなっている。