2023 年度年次報告書 次世代 AIを築く数理・情報科学の革新 2023 年度採択研究代表者

京都大学 大学院情報学研究科 特定助教

Incorporating Meta-information in Machine Unlearning for Large Language Models. (メタ情報による 大規模言語モデルの機械アンラーニング)

研究成果の概要

We explore machine unlearning in the context of large language models (LLMs) in this research project, which aims to erase a specific piece of knowledge or concept from a trained LLM. In this fiscal year, we specifically focused the following the following parts of the research project: (1) Machine unlearning evaluation, and (2) Memorization mechanism.

For machine unlearning evaluation, we explored a cryptology-inspired machine unlearning evaluation method, which applies the concept of zero-knowledge protocol (ZKP) to design a repeated trial for assessing the knowledge level of a language model. Experiments based on password-guessing scenario and price negotiation scenario is conducted to showcase the idea. We observe the difference in performance (password-guessing accuracy or utility score of negotiation) among language models with different knowledge levels. This illustrates the possibilities of using this kind of trial to assess the knowledge level of a language model.

Further, we explored the memorization mechanism of LLMs. Among the bottom-up and top-down approaches for model interpretability, we choose the top-down representation engineering approach. Inspired by the emergent ability of LLM of scaling across multiple languages, we obtain the model control vectors that is derived from a specific concept (target of unlearning). This control vector could be used to control LLM behavior to align with the given concept. As a next step, we plan to explore LLM unlearning methods based on Fisher information between the model parameter and the control vector.