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１． 研究のねらい 

The community puts a significant effort to speed up the Deep Learning (DL) design process, 

e.g., training large Deep Neural Networks (DNNs) on large-scale High-Performance Computing 

(HPC) systems. With the steady increase in the size of datasets and DNNs model, the 

conventional data parallelism approach faces substantial scalability challenges includes (a) lack of 

memory capacity at computing nodes, (b) high I/O and communication overhead, and (c) 

application accuracy. The target of this project is to enable training Deep Learning models on 

large-scale HPC systems with a short time by studying (1) new parallelism strategies (not only 

data parallelism), e.g., model/hybrid parallelism, (2) methods to reduce the I/O and 

communication time. Based on this research, we aim to develop frameworks that support DL 

developers and researchers in figuring out the optimal large-scale strategies when deploying a 

given DNNs model, dataset, and computing system.  

２． 研究成果 

（１）概要 

We conduct the following research topic: 

Research theme 1:  We firstly investigated the methods that help to resolve the problem of 

lacking memory capacity when training an ultra-big DL model by investigating the model/hybrid 

parallelism. We developed a performance/memory estimation model as the basis for a utility 

named ParaDL, that aids end-users, framework developers, and system builders in identifying 

the optimal large-scale parallelism strategies (published in conference-HPDC2021). The 

proposed estimation model is helpful in solving different emergent scalability problem of 

large-scale training Deep Neural Network. 

Research theme 2: We designed the methods that help to reduce up to 60% of communication 

time for both data and model parallelism. Basically, state-of-the-art techniques for optimizing 

communication time are (i) Architecture-aware algorithm, (ii) data compression, and (iii) comm. 

/comp. overlapping. We proposed the communication algorithm optimized for GPU-cluster 

system (published in conference-CCGRID2021), We also study how to combine those three 

techniques. 

Research theme 3:  We found that loading data samples from dataset to computing devices 

(I/O time) during training is one of the main time-consuming tasks. Especially when the dataset 

size is too big for impossibly replicating the entire dataset into the local storage of computing 

devices. We investigate the viability of partitioning the dataset among computing devices and 

only doing a partial distributed exchange of samples before each epoch. We provide a general 



 

solution, implemented in PyTorch, that allows the user to control the partitioning and partially 

distributed exchange scheme. This would enable users to experiment with large datasets to 

explore the viability of our scheme for their specific dataset/model/scale (conditionally 

accepted in IPDPS2022). 

（２）詳細 

Research Theme 1: Performance/Memory Estimation Model (collaborated with Barcelona 

Supercomputing Center (BSC):  

We anticipate that model/hybrid parallelism approaches would have a central role in the 

scaling of DL training, especially for scientific simulations that more than often deal with 

high-resolution datasets. We addressed (all) different types of parallelism approaches based on 

parallelizing different dimension in training Deep Neural Network (DNN) / Deep Learning (DL) 

application including: (1) the size of data set (data-parallelism or sample parallelism), (2) 

dimension of each data sample such as width, height of an image sample (spatial parallelism), (3) 

depth of DL model, i.e., the number of layers (vertical model parallelism or layer parallelism), (4) 

the width of DL model, i.e., the channel /filters of each layer (horizontal model parallelism), and 

the combination for these above approach (hybrid parallelism). we investigate the computation, 

communication, and memory requirements to understand the effect of parallelism choices on 

performance. It is worth to noting that the analytical model predicts the ideal performance 

without considering (i) the effects of both self-contention (cause by multiple flows use some 

links at the same time) and network congestion (caused by other applications running at the 

same times on a shared system), (ii) the effects interconnect hierarchy of modern computing 

systems, the algorithms used by communication libraries, and the communication technologies 

to the input-parameter of our analytical model.  

We rely on a hybrid of analytical modeling and empirical parameterization. We introduce the 

self-contention modeling with a contention penalty coefficient parameter which can be 

estimated analytically by using dynamic contention graphs. In addition, the baseline 

performance predicted by our analytical model can be complemented with a congestion impact 

factor, which can be empirically estimated for each specific computing system beforehand. For 

issue (ii), we use the empirical parameterization method, i.e, we empirically measure the 

communication time of collective communication patterns, such as Allreduce, with different 

message sizes, number of involved processing elements on a specific computing system. Those 

empirical measurements can be derived from well-known tools for the performance of systems, 

e.g., OSU Micro-Benchmarks or NCCL-test. Figure 2 show an example of the prediction 

accuracy of our new estimation model which can achieve up to 97% correctness, and 86.7% on 

average across all parallel strategies on multiple CNN models and datasets on up to 1K GPUs 

(more result in paper [1], HPDC2021).  



 

 
Figure 2: Time breakdown of our analytical model (ParaDL) in comparison with measured runs 

for different parallelism strategies of DL training. The x axis is the number of GPUs. The label 

above each column shows the projection accuracy.   

Research Theme 2: Communication Optimization - study the method to reduce the 

communication time. 

Communication is one of the factors that limits the scaling of training deep learning across 

multiple compute nodes of the HPC system. At each training iteration, each computing process 

performs the Allreduce collective communication to share their local training result, e.g., local 

gradients to calculate the global gradients for weight update. As the deep learning models 

become more complex due to accuracy demands, communication becomes a critical bottleneck 

especially as the message sizes become bigger. To cope with this problem, one approach is to 

optimize the Allreduce algorithm for large messages by considering the network architecture 

(topology-aware). The other is to reduce the amount of transferred data using data 

compression methods. In the latter approach, sparsification is a promising method that helps to 

cut down the transferred data significantly, e.g., up to 99.9%, without losing validation accuracy. 

However, the practical use of sparsification is limited because the sparse data restricts the 

communication into the ineffective pair-wise scheme. In this study, we propose an Allreduce 

algorithm that exploits both topology-aware techniques CCPE journal, I/F 1.167) and data 

compression (IPCCC2019) optimized for AI-accelerated computing systems such as ABCI and 

NVCluster. We validate our algorithmic implementation on Simgrid simulation. The results show 

significant improvement, as in Figure 3a, of our proposed over the conventional Allreduce and to 

the sparse Allreduce with a trivial extra computing cost, e.g., 2-3% of total time. 

 

 (a) Overview of our proposal (b) Example result with 512GPUs 

Figure 3: Overview of our proposal and example result in research theme 2 

In [2] (published in CCGRID2021), we also investigate the benefits of co-design of 

Allreduce algorithms and the network system to reduce the communication time of training 



 

process. We propose to replace the Fat-tree network topology with a variant of Distributed 

Loop Network topology (DLN) that guarantees a fixed routing paths length between any pairs of 

computing nodes for the communication pattern of halving-doubling Allreduce algorithm.We 

also propose a technique to eliminate/mitigate the network contention by using our 

performance estimation model (SHD). The simulation results show that our co-design helps to 

reduce the communication time significantly (50-90%) when the number of ranks increase up to 

1000s GPUs (as shown in Figure 3b). 

Research Theme 3: I/O Optimization - study the method to reduce the I/O time (collaborated 

with RIKEN:  

Distributing the training of a neural network in a data (and hybird) parallelism fashion over 

compute nodes of a supercomputer requires loading the input samples on compute nodes so 

that each node can process a subset of the samples at each training epoch. This is either done 

by storing the entire dataset on computing node-local storage, or by each node reading a 

subset of the samples from the parallel file system (PFS). As datasets become larger, storing 

the entire dataset on local storage becomes impossible since they exceed storage capacities. 

Similarly, reading from the parallel files system puts enormous pressure on the storage nodes 

because many compute nodes read terabytes of data simultaneously. Moreover, to improve 

generalization, distributed neural network training shuffles the data at each epoch so that 

nodes can randomly access input samples, which further increases the I/O requirements of 

deep learning applications. 

In [3] (IPDPS2021), we revisit data shuffling strategies when scaling deep learning 

applications to a large number of computing nodes. We develop a method that allows us to 

control the fraction of the dataset that is globally shuffled in each epoch. In our method we 

implement the following shuffling strategies. Global shuffling (i.e., all of the dataset is shuffled 

and distributed across workers), local shuffling (i.e., each worker uses the same part of the 

dataset for each epoch), and a novel partial-local shuffling strategy that exchanges only a 

configurable proportion of the dataset among workers in each epoch and leaves the rest local. 

Using our method requires very few changes to existing PyTorch training scripts, does not 

require any changes to the PyTorch framework itself, and could support any arbitrary format for 

the samples by implementing a loader for the data.  

    

 (a) Training accuracy at large scale (b) Training time (512GPUs) 

Figure 4: Example result in research theme 3. Our proposed Partial Shuffling has accuracy as 



 

good as the conventional global shuffling while achieving training time as fast as local shuffling. 

 

We provide a proof that partial local shuffling produces the same gradients as global shuffling. 

We further investigate the practical conditions for assuring that the shuffling error without 

dominating the convergence rate. For empirical results, we use our solution to train DNNs on 

several datasets and we study the impact of various shuffling strategies on accuracy when 

scaling to a large number of computing nodes. The partial-local shuffling strategy then achieves 

similar accuracy as global shuffling while only requiring to store to up to 0.03% of the whole 

dataset (as shown in Figure 4). In addition, for data sets that do not fit locally in the first place, 

partial-local shuffling can improve accuracy compared to the local only access. This opens the 

doors for leveraging the potential of locality in large scale training of large datasets, and 

addresses the DL I/O challenge at its root: avoid I/O when possible. 

 

３． 今後の展開 

Because we provide frameworks that are designed for the general training tasks in this 

project such as ParaDL, KARMA, and PartialShuffling method in Pytorch, it is easy to use and 

apply our proposal for training different DNN models, datasets, and systems (not just our 

experiment result). For communication optimization, we implemented the new Allreduce algorithm 

with the basic Message Passing Interface in C, which could be run in both the simulation 

environment as well as the real computing system. Integrating those techniques in the future 

becomes possible and does not require large efforts. 

In the near future, our research is still helpful because the trends of designing a bigger Deep 

Learning model still not ended. For example, the Natural Languages Processing (NLP) models 

using Transformer techniques, which is paid attention by researchers and big companies in 

recent 2 years increased their sizes frequently which could become 100s Billions of parameters. 

In this context, we will continue design a method to search the best (fine-grained) hybrid 

parallelism approach for a specific application such as NLP, by using our prediction model as the 

objective function of the optimization problems. 

４． 自己評価 

Our research helps to speed up the development of new Deep Learning applications. It could 

help to enlarge the usage of Deep Learning (DL), especially, DNN models in many different 

application areas such as robotics, medical science, music, as well as scientific research etc. 

where the datasets, DL models is much bigger than those are in the conventional computer vision 

area. In 5-10 years, our research could be helpful in studying the training Deep Learning 

application in the edge-computing environments. As the number of mobile devices increases, as 

the network infrastructure becomes faster, there is a trend that decentralized training the Deep 

Learning model at the edge mobile devices instead of centralized training at the 

high-performance computing system. It helps to resolve the problem of privacy where user's data 

do not leak to any company server for training. However, mobile devices could not have a high 



 

configuration in terms of computing, memory, and energy resource. Our research on solving 

memory capacity issues and communication optimization such as compression/sparsification 

could help in this situation. Besides, the data in each edge mobile device is non-independent and 

identical, our theoretical research on shuffling the data could help in this case.   
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operations, is one of the main factors limiting the scaling of data parallelism training. 
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algorithms, parallelism strategy, communication algorithms, and system design have been 

proposed to cope with this communication challenge when scaling distributed training of 

DNNs. However, even with those methods, communication still becomes a bottleneck with 

the steady increase in model sizes, e.g.,100-10,000s MB, and the number of compute 

nodes, e.g., 1,000-10,000s of GPUs. In this work, we investigate the benefits of co-design 

of Allreduce algorithms and the network system. We propose to replace the Fat-tree 
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pattern of halving-doubling Allreduce algorithm.We also propose a technique to 
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3. Truong Thao Nguyen, François Trahay, Jens Domke, Aleksandr Drozd, Emil Vatai, Jianwei 

Liao, Mohamed Wahib, and Balazs Gerofi, “Why Globally Re-shuffle? An I/O Perspective on 

Data Shuffling in Large Scale Deep Learning”, 36th IEEE International Parallel & Distributed 

Processing Symposium (IPDPS2022), 2022 (conditional accepted)   

Replicating the entire dataset on the local storage is not feasible, for most HPC systems. 

In this paper we investigate the viability of partitioning the dataset among workers and 

only doing a partial distributed exchange of samples before each epoch, when deemed 

necessary. We show that partitioning and exchange schemes yield a shuffling error that, 

in theory, dominates the convergence rate. We show, however, through an extensive set 

of experiments that in practice the validation accuracy could be maintained when 

carefully tuning the partial distributed exchange. We provide a general solution, 

implemented in PyTorch, that allows the user to control the partitioning and partial 

distributed exchange scheme. This would enable users experimenting with large datasets 

to explore the viability of our scheme for their specific dataset/model/scale. 
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