
 - 285 -

研究課題別評価

１．研究課題名： 計算状態パーソナル・スクラップブック

２．研究者氏名： リチャード ポッター

３．研究の狙い
The goal of this research is to investigate new programming tools that work by saving and restoring
intermediate computation state. The same basic idea has brought important benefits to other types of
tools and applications. Scientific and other distributed applications can benefit by saving an application
in mid-execution and moving it to a machine with more resources. Other applications gain fault
tolerance by saving application state for rolling back to a safe checkpoint in case of hardware or
software failures. However, few benefits have been explored for programming tools that can save and
restore the computation state of a program under development.
One reason to expect benefits is that quick initialization of programs in mid-execution can make it
possible to focus programming tools and programmer attention in new creative ways. People who are
learning new programming skills can benefit because it allows a wider range of techniques to be applied
to a program that has been subdivided into more manageable pieces. An additional general benefit is
that program state can be enumerated more efficiently and methodically, which enables model checking
on actual implementations. The questions for this research are what tools can make these potential
benefits practical for actual programming activity and what infrastructure will make these tools easy to
implement.
Tools based on Computation Scrapbooks have potential to be simple because it is simple and
increasingly practical to copy computation state. It is conceptually simple because, like photo copying
complex information on a sheet of paper, it is not necessary to understand the information to easily
copy it. Copying computation state is practical because hard disk sizes and processor speeds are fast
enough to copy realistic computation state quickly.
The challenge of this research is to demonstrate that Computation Scrapbooks can be both useful and
practical without adding too much complexity to the simple core functionality that copies the
computation state. Thus it is important to distinguish between the core functionality, which is well
defined and clearly practical, and the extended functionality, which may be less well defined and only be
possible for certain special cases.
The approach of the research has been to create two systems. The first system is for fast
prototyping various Computation Scrapbook based tools. It has limited core functionality, but is flexible
for exploring the various types of extended functionality necessary to support the tools. The second
system is designed for actual use by real users. It has more rigorous core functionality that is general,
however the range of extended functionality and tools is less than the first system.
The name “Computation Scrapbook” represents the core infrastructure itself, and is intended to
convey that multiple snapshots of computation state are saved and used in creative ways. It
encompasses functionality to save, organize, and restore snapshots of computation state. To support
programming tools, a Computation Scrapbook must support thread persistence, because use in
programming tools requires checkpointing at a fine granularity and therefore the stack states must be
preserved. Also, multiple persistent snapshots will be required for several of the programming tools.

４．研究結果
In this research, two different Computation Scrapbooks have been implemented using different
techniques. SBDebug, the first system implemented, captures the state of Lisp programs that run in the
Emacs text editor. It creates snapshots that are typically less than 10KB in size. It works by

 - 286 -

instrumenting functions so that they make internal stack frames easy to capture in a top-down manner.
Saving and restoring state is quick and the Lisp environment makes it easy to manipulate programs and
data. Therefore, SBDebug has been useful for quickly prototyping new Computation Scrapbook tools,
although its use is limited to a restricted class of Emacs Lisp programs.
SBUML, the second system implemented, captures the state of the Linux operating system, including all
file systems, applications, processes, and kernel state. SBUML is early in development, but it will be
useful for creating tools for a wide range of programming languages and will support complex, real-world,
multithreaded programs. It works by copying the complete low-level image of all changes to memory
and disks of User-Mode Linux, a virtual version of Linux. This makes it less flexible than SBDebug for
prototyping innovative tools because the Linux state is more heterogeneous and therefore harder to
manipulate than Lisp. Also, the snapshots require more computing resources. Raw snapshots start
at about 30MB in size, although snapshots can sometimes be compressed to around 100KB. Saving
and restoring raw snapshots takes around 5 seconds on a 2.8gHz dual processor workstation.
Several tools based on the core Computation Scrapbook infrastructure were developed to support
various programming activities, such as reading code, writing code, debugging, and testing.
For example, when reading a program, a user can sometimes benefit by watching the program execute
using debugging or software visualization tools. However, setting up the debugger so that it shows
something useful about a particular section of code can require a lot of skill. A Computation
Scrapbook can let a skilled programmer prepare and save such a debugger configuration and share it
with other users.
This idea was explored in SBDebug by creating a snapshot documentation tool with two features. The
first feature lets the experienced programmer paste a hyperlink into source code text. The second
quickly takes anybody who selects the hyperlink back to the same debugger configuration.
Experimenting with these features has made other uses obvious. For example, hyperlinks could be put
in on-line programming language documentation to quickly take readers to live examples of specific
language features in action.
While developing a program, sometimes testing has to be delayed until a whole module is completed.
Since a snapshot can initialize any part of a larger program, arbitrarily small and partially completed
code segments can be tested earlier.
This idea was implemented in SBDebug as a snapshot test case tool. To use it, the user sets up the
initial computation state for the beginning of the code segment using whatever techniques are most
convenient, which might be done by running the program manually, writing a driver, manually editing the
state, or some combination of these. This first snapshot is then saved. The user then runs the
program to the end of the code segment and saves a second snapshot, possibly editing the
computation state manually if the code does not compute the correct outcome. Finally, the user uses
the test case tool to create a test case from the two test cases just saved. A second test case tool
feature runs the test case. It initializes the code with the first snapshot, runs until the program counter
matches that of the target snapshot, and then compares the computation state with the second
snapshot to judge if the test passed. A third feature can run a set of test cases with a single
command.
Experience with the tool shows that it can be very easy to create a test case in the middle of writing
and debugging a program. If later the code is changed, it is easy to rerun the collected set of test
cases to quickly check for any new bugs might have been unintentionally introduced.
When writing code, it can sometimes be desirable to give a specific example of what the program does
rather than write the abstract code. Although automatic programming techniques are well researched,
they only work for very small programs of limited use. Computation Scrapbooks make it possible to
apply such techniques to small parts of larger programs, so that they can generate useful code. This
can be practical because the snapshot test cases work for code segments that are so short that all
possibilities can be enumerated.

 - 287 -

This idea can be demonstrated in SBDebug with its programming by demonstration (PBD) tool. The
user first selects an incomplete or incorrect Lisp expression and also selects a set of test cases. The
PBD tool can then enumerate possible expressions until one passes all test cases. In order to make
the interface this simple, some plausible defaults were chosen for how to enumerate the expressions.
For example, only functions, constants, and other tokens that already appear in the function that
contains the original expression are used.
So far this tool is only a proof of concept implementation to show automatic programming is possible
for realistic programs when a Computation Scrapbook is used to focus the technique on a small parts
of the programs. Some refinements were implemented to delay the inevitable combinatorial explosion.
In addition to static type checking, the PBD tool also keeps track of runtime errors to reduce the
number of expressions that must be generated and tested.
When verifying the correctness of concurrent programs, model checking techniques can be useful.
However, model checking must usually be performed on a separate abstraction that may not match the
actual implementation. Computation Scrapbooks can restore the state of an actual implementation
repeatedly so that all possible successor states can be generated for model checking. This idea has
been demonstrated by enumerating all the possible states of a C implementation of the Dining
Philosopher’s algorithm running in SBUML.

５．自己評価
Overall, the research proceeded steadily with progress in both implementations and high-level ideas.
At the beginning of the research period, the high-level ideas were loosely strung together notions about
end-user programming, gentle-slope systems, invisible computation state, the increasing practicality of
copying computation state, and the idea that interaction with computation state can lead to higher-level
understanding. This was enough of a framework to guide the quick implementation of SBDebug.
Experience with SBDebug resulted in a clearer understanding of the high-level benefits of Computation
Scrapbooks, which mostly come from the ability to quickly initialize programs in mid-execution. From
this core benefit, other benefits are easy to explain, including how programs in mid-execution provide
context that is useful for gentle-slope systems. Some of the refined high-level ideas were published in
a paper that explained how Snapshot Documentation is an appropriate technique for gentle-slope
systems. Experience with SBDebug also gave the confidence to start investigating the practicality of
Computation Scrapbooks for other systems.
After investigating the practicality of a Computation Scrapbook system for Java, it became apparent
that one for Linux might be easier to implement. At first it seemed that checkpointing Linux might be
slow and only good for very slow proof-of-concept demonstrations. However, SBUML has turned out
to be much faster and useful than expected. It can save and restore snapshots in a few seconds and
compress snapshots down to sizes that are practical to download quickly over the Internet.
This research provides a foundation for several useful and challenging research directions. For the
short term, most practical benefit will be using SBUML for its Snapshot Documentation potential.
SBUML is currently being distributed publicly and has great potential to be useful to researchers and
other users. For advanced computer science research, the model checking applications of SBUML
show great potential. For ground breaking research, it will be interesting to transfer the extended
functionality demonstrated in SBDebug to SBUML and show how the testing and automatic
programming tools can work for popular languages like C and Java.

６．研究総括の見解
ポッター研究者は、プログラムの実行状態の表示、保存、復帰、途中状態からの実行再開などを行う
ツールがプログラムの理解や開発に有効であるという考えにもとづき、コンピュテーションスクラップブ
ックというツールの研究を行った。この原理自身は特に新しいものではないが、構築されたツールは
非常に優れ、有効なものである。ポッター研究者のプログラミングの能力とセンスの良さ、ツール設計

 - 288 -

の適切さによるものである。開発された2つのツールのうち、Linuxオペレーティングシステム上のプロ
ラム開発を対象にした SBUML は特にそのアイディアの斬新さや適用範囲の広さから期待の大きいツ
ールである。ネットワークプログラミングやシステムプログラミングにとって非常に強力なツールになり
得ると考える。

７．主な論文等

論文

1．O. Sato, R. Potter. M. Yamamoto, and M. Hagiya, UML スクラップブックとスナップショットプログラミン

グ環境の実現, Linux Conference 2003

2．R. Potter and Y. Harada, Additional Context for Gentle-Slope Systems, IEEE Symposia on

Human-Centric Computing Languages and Environments (HCC 2003)

3．R. Potter and M. Hagiya, Computation Scrapbooks for Software Evolution, Fifth International

Workshop on Principles of Software Evolution (IWPSE 2002)

4．R. Potter, Computation Scrapbooks of Emacs Lisp Runtime State, 第43回プログラミング・シンポジ

ウム

5．R. Potter, Computation Scrapbooks of Emacs Lisp Runtime State, IEEE Symposia on Human-Centric

Computing Languages and Environments (HCC 2001)

6．R. Potter, Computation Scrapbooks, 第４回プログラミングおよび応用システムに関するワークショッ

プ (SPA2001)

ソフトウェア

1．SBDebug: A Computation Scrapbook for Emacs Lisp. (Approximately 8500 lines of Lisp)

2．SBUML: A Computation Scrapbook for User-Mode Linux. (Approximately 5500 lines of C and 1800

lines of Shell Script)

