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３．研究の狙い： 

The research explored new frontiers of automated software production. The goal is to build programs 

that build program. The scientific approach taken in this project is unique in that I investigate a 

combination of three fundamental principles: (1) three basic transformation operations on programs 

(program composition, program inversion, and program specialization), (2) multiple layers of these 

transformations, and (3) their portability to new languages via interpreters. I study these principles using 

semantically clean functional languages.  

 

４．研究結果： 

Our goal is to explore the frontiers of automatic software production based on a combination of three 

fundamental insights.  

(1) Three operations. Our thesis, based on a structural analysis of formal linguistic modeling as 

explained in our earlier publication [13], is that three fundamental operations are needed: program 

composition, program inversion, and program specialization. We found that these operations have to 

be performed efficiently and effectively by tools for software production to be truly powerful. Of 

these, program specialization, also known as partial evaluation, has been studied intensely and is the 

best understood method.  

(2) Layers of metasystems solve a wide spectrum of transformation problems using only the three 

types of operations listed in (1). A cornerstone in this development are the Futamura projections 

which make use of two metasystem layers of program specialization. We examined novel 

meta-system structures including the specializer projections, multi-level generating extensions and 

a new metasystem scheme for program composition and program inversion (cf. [2, 7, 12]).  
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(1) Inverse interpreter  (2) Inverse translator  

Figure 1: Two tools for solving inversion problems (where [[p]] x = y) 

 

 

3. New programming languages for the construction software will continue to emerge rapidly as 
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information technology evolves (cf. the recent phenomenal success of Java). There is no evidence 

that any particular programming language will be the last in this series. Solutions for (1) and (2) must 

be able to accommodate languages as they are needed to be truly successful. Semantics modifiers, 

a novel concept for robust semantics [2], promise language independence for composition, inversion, 

and specialization.  

We have identified these three principles as important through our research. Existing approaches to 

automatic program transformation have only considered part of the operations in (1) or used only 

restricted forms of metasystem schemes (2). Semantics modifiers (3) are original and, thus, have not 

been investigated before.  

Our research goal was to advance the theory and methods for automatic program transformation 

based on the principles identified above, and to study the computational feasibility of our scientific ideas 

for theoretically clean, functional languages. We approached these scientific questions partly by 

theoretical means and partly by experimental work. What follows is a technical overview. References to 

publications are provided for more detailed information.  

 

A. Inversion of functions is a fundamental concept in mathematics, but the inversion of programs 

has received little attention in software science (with the exception of logic programming). Programs 

that are inverse to each are often used. Perhaps the most common example are programs for 

compressing and decompressing files sent via networks. Today, programs for both transformations need 

to be written manually, but this is not necessary. One program should be sufficient, and then have a 

program inverter derive the other program automatically.  

Inversion problems can be solved in two ways, either by an inverse interpreter or by a program 

inverter. Both software tools are illustrated in Fig. 1. We studied both approaches for first-order 

functional languages. A difficulty for program inversion is that traditional programming languages do not 

support computation in both directions and that there is little known about the automatic generation of 

inverse programs. Logic programming is suited to find multiple solutions and can be regarded as a 

method for inverse interpretation, but only for relational programs. A detailed description of these 

notions can be found in our publications [1, 2, 3].  

We studied the Universal Resolving Algorithm (URA), a powerful method for inverse computation for 

first-order functional programs. The algorithm was implemented in Scheme for a typed dialect of 

S-Graph, and shows some interesting results for the inverse computation [2, 3]. The algorithm is 

powerful enough to deal with multiple solutions. We also showed that the algorithm is sound and 

complete, and computes each solution in finite time [4]. Due to the interpretive nature of the algorithm, 

inverse computation by URA is slower than using an inverse program.  

We analyzed the Korf-Eppstein method (short, KEinv) for automatic program inversion of first-order 

functional programs [10] and formalized the transformation using a structural operational semantics. It 

is one of only two existing general-purpose automatic program inverters that were ever built. This was 

the basis for studying the generation of inverse programs.  

Recently we proposed [11] a method for automatic program inversion in a first-order functional 
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programming language that achieves transformations beyond KEinv. One of our key observations is that 

the duplication of values and testing their equality are two sides of the same coin in program inversion. 

This led to the design of a new self-inverse primitive function that considerably eases the inversion of 

programs. We illustrated the method with several examples including the automatic derivation of a 

program for run-length decoding from a program for run-length encoding. This derivation is not possible 

with other methods, such as KEinv. Another example, more theoretical in nature, is the inversion of a 

program fib that computes pairs of neighboring Fibonacci numbers; for instance, fib(2)=<2, 3>. The 

automatic inversion is successful and produces an inverse program fib-1; for instance, fib-1(<34, 55>)=8.  

 

B. Composition The construction of complex software by sharing and combining components in 

order to ease software construction is the main focus of many recent approaches. But abstraction 

layers do not come for free: they add redundant computations, intermediate data structures, extra 

run-time error checking. Program composition is a program optimization that can remove such 

redundancies, and allows the composition of software parts without paying an unacceptably high price in 

terms of efficiency.  

We examines the problem to transform functional programs, which intensively use append functions 

into programs, which use accumulating parameters instead (like efficient list reversal) [14]. We studied 

an (automatic) transformation algorithm for our problem and identify a class of functional programs, 

namely restricted 2-modular tree transducers, to which it can be applied [15]. We showed how 

intermediate lists built by a selected class of functional programs, namely “accumulating maps”, can be 

deforested using a single composition rule. For this we introduced a new function ‘dmap’, a symmetric 

extension of the familiar function ‘map’. While the associated composition rule cannot capture all 

deforestation problems, it can handle accumulator fusion of functions defined in terms of ‘dmap’ in a 

surprisingly simple way. For this research direction we conclude, that automatic, non-trivial composition 

remains a challenging research problem for the future. Possibly, program composition the most difficult 

of the three operations to achieve in an automatic and general fashion.  

 

C. Semantics modifiers A key ingredient of our approach are semantics modifiers because they 

allows the design of general and reusable program transformers which make use of results of task A 

and B, in principle, portable to other programming language.  
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Figure 2: Semantics modifier + standard semantics = non-standard semantics.  

 

We developed a mathematical theory for non-standard semantics and examined the meaning of 

several non-standard interpreter towers [1]. Our results suggest a technique for the implementation of 

a certain class of programming language dialects by composing a hierarchy of non-standard interpreters. 

Based on this theory, we experimented [12] with the Universal Resolving Algorithm (see A above) to 

prototype programming language tools from robust semantics: we used automatic program 

specialization to turn interpreters into inverse interpreters for several small languages for which no 

hand-written tools exist (including interpreters for an applied lambda calculus, an imperative flowchart 

language, and a subset of Java bytecode). This is illustrated in Fig. 2.  

This application of self-applicable program specializers is remarkable since it suggest a new use of 

program specialization that is different from the familiar Futamura projections. Also, we studied powerful 

specialization methods [6], loop peeling to increase the accuracy of program analysis [16] and edited a 

special issue on program transformation and partial evaluation [9].  

For our experiments we needed to analyze the power of program specialization and have done so 

for online and offline partial evaluation [5], for the Futamura projections [8] and binding-time 

improvements [7].  

Despite practical successes with the Futamura projections, it has been an open question whether 

target programs produced by specializing interpreters can a lways be as efficient as those produced by a 

translator. We showed that, given a Jones-optimal program specializer with static expression reduction, 

there exists for every translator an interpreter which, when specialized, can produce target programs 

that are at least as fast as those produced by the translator. We call this class translation universal 

specializers. We also showed that a specializer that is not Jones-optimal is not translation universal. In 

a second step we examined Ershov’s generating extensions and introduced the class of generation 

universal specializers. We answered these questions on an abstract level, independently of any 

particular program specializer. We were interested in statements that are valid for all specializers, and 

have identified such conditions.  

In another study about the strength of program specializers, we showed that the accuracy of online 
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partial evaluation, or polyvariant specialization based on constant propagation, can be simulated by 

offline partial evaluation using a maximally polyvariant binding-time analysis [5]. We showed [7] that 

Jones optimality, which was originally aimed at the Futamura projections, plays an important role in 

binding-time improvements. The main results show that, regardless of the binding-time improvements 

which we apply to a source program, no matter how extensively, a specializer that is not Jones-optimal 

is strictly weaker than a specializer which is Jones optimal.  

 

５．自己評価： 

Our research centered around three important principles (three program operations, metasystem 

layers, adaptability). In particular, we examined inverse computation theoretically and experimentally, and 

adapted an algorithm to several programming language subsets by automatic program specialization, 

including a small subset of Java Bytecode. We characterized the accuracy of online and offline 

specialization [5] and identified the conditions for strong binding-time improvements [7] and the 

translation universality  [8] of Futamura projections. We proposed an automatic method for program 

inversion that is stronger in some important aspects than other inversion methods and shows some 

remarkable results. [10]. For program composition, attribute grammars are promising and we have done 

steps in this direction [14,15], but conclude that the fundamental problem of accumulator fusion 

remains a challenging research task for future work.  

We  found that there is no theoretical limit to the translation power of the Futamura projections 

provided a specializer with static expression reduction is also Jones-optimal and introduced the class 

of translation universal specializers. We believe that the power to perform universal computations is 

another property for the theoretical power of a program specializer. Whether the results can be adapted 

to other non-standard interpreter hierarchies as developed in [1] is a topic for future work. It is quite 

possible that the results [7,8] can be carried to the next metasystem level. We also want to explore the 

conditions for generating translators and other program generatorsfrom generation universal 

specializers.  

Our experiments applied the idea of prototyping programming language tools from robust semantics 

[12]: we produced automatically inverse interpreters for programming languages for which no inverse 

interpreter existed before. Even though these languages are small, the results demonstrate that it is 

possible in practice with existing partial evaluators. To the best of our knowledge, these are the first 

results regarding this use of partial evaluation. Our results show that a speedup of an order of 

magnitude can be achieved for some interpreters. Limiting factors of offline partial evaluation was the 

need for binding-time improvements and the lack of generalization.We believe there is still more to be 

gained by partial evaluation and want to investigate stronger specialization techniques, such as [6]. 

A main difficulty in the generation of inverse programs are conditionals and recursive functions. We 

now try to solve some of these difficulties through the application of parsing techniques to program 

inversion. Tasks for future work also include the refinement of the well-formedness criteria [10]. We 

have not exploited mathematical properties of operators during the inversion. A possible extension of 

our techniques may involve the use of constraint systems for which well-established theories have 

been developed in other areas. 
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We described an algorithm for inverse computation, studied its organization and structure, and 

illustrated our implementation with several examples [3,12]. Methods for detecting finite solution sets 

and cutting infinite branches can make the process of inverse computation terminate more often (while 

preserving soundness and completeness) and may make the method more practical. Techniques from 

program transformation and logic programming may prove to be useful in this context, and we are now 

taking first steps into this direction. We also want to explore further its portability to new languages via 

semantics modifies [1,2]. 

 

６．研究総括の見解： 

仕様からソフトウェアを自動生成する方法に関してはいくつかのアプローチがあるが、Glueck 研究

者は、正しいが効率の悪いプログラムをプログラム変換の手法により効率を上げる方法を研究した。

この方法は従来から多くの研究が続けられ、多くの成果が報告されているが、未だ実用的な解決が得

られていない難問である。Glueck研究者は、プログラム変換における基本変換である、合成、逆転、特

殊化について科学的に質の高い研究を行い、この領域の発展に貢献した。また、評価の高い国際会

議や論文誌にて多数の論文発表を行った。特に、プログラム逆転や特殊化については非常に優れた

結果を出している。もちろん、これらの結果によっても実用的な問題が解ける段階にはなっていないが、

そのための基礎となる理論的、科学的貢献は大きい。 
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