戦略的創造研究推進事業

ナノテクノロジー分野別バーチャルラボ 研究領域「超高速・超省電力高性能ナノデバイス・ システムの創製」

研究課題「有機半導体レーザーの 構築とデバイス物理の解明」

研究終了報告書

研究期間:平成14年11月~平成20年3月

研究代表者: 安達千波矢 (九州大学未来化学創造センター 教授)

1 研究実施の概要

<u>1. はじめに</u>

発光性の有機色素分子を有機溶媒に溶かし、光で強励起することによりレーザー光が得 られることは、1966年に Sorokin, Lankard, Schafer らによって初めて報告された。この有機 色素を用いたレーザー(Dye laser)は、紫外から赤外領域に渡る幅広い波長可変特性を有する ことから、現在に至るまで目覚しい発展を遂げてきた。一方、溶液の取り扱いの煩雑さや 溶液中での色素の劣化が早いことから、有機色素を固体中に分散した有機固体レーザーの 研究も近年活発に行われている。有機固体薄膜からの ASE(Amplified Spontaneous Emission: 自然放射増幅)発振や共振器構造を有する有機薄膜からのレーザー発振は、高分子や低分子 媒体中にレーザー色素をドープした薄膜において報告されている。これらの研究から、有 機色素は高い誘導放出係数を有しており、固体薄膜導波路の形成により低閾値が可能な固 体デバイスの構築が可能なことが明らかにされてきた。最近では、さらに、電流励起を意 識した有機半導体性色素からのレーザー発振を目指した研究も行われている。このことは、 有機 LED(OLED)が三重項励起状態を発光中心に用いることにより 100%に迫る内部発光効 率が達成され、OLED の延長線上にある有機半導体レーザーの実現が有機エレクトロニクス の現実的な研究課題となったためである。研究代表者は 1989 年の時点において、Eu 錯体な どの希土類三重項励起子を利用した有機半導体レーザーダイオードに関するアイディアを 論文として提案しているが、ようやく実現の可能性に取りかかる下地が揃ってきた。

本プロジェクトでは、有機半導体レーザーの実現を目指した。特に、有機半導体レーザ ー実現には~1000A/cm²の大電流密度に耐える有機材料・デバイス構造の開発、低閾値を目 指した新しいレーザー材料の開発、高電流密度下における励起子失活(annihilation)過程の 解明が必要である。レーザー材料においてはビススチリルベンゼン誘導体(BSB)が有機固体 薄膜中において非常に優れた ASE 発振特性を示すことを明らかにした。また、有機単層薄 膜に最大 1MA/cm²を超える大電流注入に成功した。積層型の発光デバイス構造においても 1KA/cm²を超える電流注入に成功した。さらに、高電流密度下における励起子失活過程 (Singlet-Singlet, Triplet-Triplet, Exciton-Polaron Annihilation)の詳細について検討を行った。電 流励起デバイス構造においては、光導波路型に加えトランジスタ構造が有望であることを 明らかにした。最後に、Cutoff 現象を利用した光導波路構造の導入によって、極低閾値での 光増幅現象を確認し、電流励起によるレーザー発振の可能性を確認した。

2. 有機レーザー活性材料の探索と低閾値化の検討

有機半導体レーザーの活性中心としては、適切なレーザー色素を有機半導体ホスト媒体 中に分散する必要がある。そして、ホストでのキャリヤー再結合後、ゲスト分子へエネル ギー移動、もしくはゲスト分子による直接的なキャリヤー再結合による励起子の生成が必 要である。そのためには、電流励起に適したホストーゲスト系材料の選択が必要であり、 OLED で発光性ドーパントとして実績のある材料が有効である。レーザー色素としてスチリ ルアミン系、クマリン系、シアニン系材料など様々な分子骨格が知られているが、これら の材料は分子間相互作用によって必ずしも固体薄膜中において優れた特性を示さない。本 研究では、主に、ビススチリルベンゼン系材料の分子設計指針とデバイス設計について検 討を行い、これまで報告されている材料の中でも、極めて低閾値で発振する材料の開発に 成功した。

CBP をホストとして、スチリルベンゼン系蛍光材料(SBD)を 6wt%ドープした薄膜の光励 起下での ASE 特性について検討を行った。特にダイマー骨格を有する bis-styrylbenzene derivatives (BSB)は極めて低い閾値(E_{th} ~1.0µJ/cm²)を示すことがわかった。一方、ヘテロ環を 含有する分子は ASE 閾値が $E_{th} = 20 \sim 100 \mu$ J/cm² と高く、アゾメチン骨格においては E_{th} >100µJ/cm² の励起エネルギーを与えても発光スペクトルの狭帯域化が生じないことがわか った。ここで ASE 閾値の支配因子を解明するために PL 絶対量子効率(ϕ_{f})、蛍光寿命(τ_{f})、 自然放射失活速度定数(k_{f})、Triplet-Triplet absorption、n- π ^{*}遷移の自己吸収による ASE の支配 原因について検討した。その結果、ASE 閾値と ϕ_{f} 、 τ_{f} の間には直接的な相関は見られないも のの、 k_r とは大きな相関が見られた。低閾値材料では k_r ~8×10⁸s⁻¹、高閾値材料では k_r ~4×10⁸s⁻¹、 ASE 不活性な材料では k_r ~1×10⁸s⁻¹となり、 k_r の大きさと ASE 閾値の間には大きな相関があ ることがわかった。さらにヘテロ環を含有する高閾値材料は n- π^* 遷移による自己吸収が ASE 抑制の原因であることがわかった。特に、ダイマー型の 4,4'-bis[(N-carbazole)styry]]biphenyl (BSB-Cz)は極めて優れた ASE 特性(発振波長(λ_{ASE})=461nm, E_{th} =0.5±0.1 μ J/cm²)を示し、 これまで検討したスチリル系蛍光材料の中で最も低い閾値を示した。PL 強度,発光寿命は 温度依存性を示さないことから、室温においても非放射失活が完全抑制されていることが わかった。蛍光量子収率は~100%に達し、放射失活速度定数も k_r =1×10⁹s⁻¹の大きな速度定 数を有することを明らかにした。さらに、材料設計を進め、 E_{th} =0.11±0.05 μ J/cm²の低閾値を 有する Spiro-BSB-Cz も開発した。

さらに、他の支配因子として、励起状態吸収による影響を検討した。BSB-Czにおいては 一重項励起状態吸収、三重項励起状態吸収共にASE発振波長に存在しないことがわかった。 6wt%-BSB-Cz:CBP 共蒸着薄膜が非常に低いASE 発振閾値を示す原因は、高い放射速度定数 (大きな誘導放出断面積)、吸収断面積がASE 発振波長において<10⁻¹⁹cm²と小さいこと、 さらに励起状態吸収が存在しないために有効誘導放出断面積が非常に大きくなるためであ ることを明らかにした。

3. 有機薄膜素子への大電流密度注入の挑戦

OLED は高い発光効率が実現されたものの、従来の OLED で実現可能な最大電流密度は 高々~10A/cm² 程度であり、それ以上の電流密度をデバイスへ通電した場合、デバイスは簡 単に破壊に至る。これまでの有機半導体発展の歴史は、"電流密度上昇との戦い"と捉えるこ とができる。有機半導体の最初の成功例は、レーザープリンターに内蔵される OPC(Organic Photoconductor)である。このデバイスは有機半導体を光電子変換媒体として利用し、画像情 報電子情報に変換するデバイスである。このデバイスでは~nA/cm² オーダーの電流密度を有 機半導体に通電する。そして、OLED では~mA/cm² オーダーの領域の電流密度を制御し電気 光変換を実現した。有機レーザーダイオードでは、さらに、これまで誰も達成したことが ない~KA/cm² オーダーの大電流密度実現への挑戦と捉えることができる。

有機半導体レーザーダイオードを実現するためには、第一に、電流励起により反転分布を 形成する必要がある。反転分布を形成させるための光励起エネルギーを電流密度に換算する と少なくとも電流密度 J~1000A/cm²に達するキャリア注入が必要となる。しかしながら、従来 の基本的な α-NPD/Alq₃の OLED 構造では最大電流密度 J_{max}~10A/cm²程度でデバイスは容易に 破壊されてしまい、電流励起による反転分布の形成は到底出来ないことになる。そこで、有機 材料を用いて 1000A/cm²の高電流密度まで耐えるデバイス構造,有機材料の設計が必要になる。

最初に、有機単層デバイスのモデル素子(ITO (Indium-tin-oxide)/CuPc/MgAg (100nm)/Ag (10nm))の素子構造について検討を行った。最大電流密度(J_{max})の膜厚依存性、陰極サイズ依存 性、高熱伝導率基板の検討から、薄膜化することにより著しく低駆動電圧化し、最大電流密 度も J_{max}上昇することが分かった。キャリヤ伝導の律速過程が膜厚により大きく変化することが示唆された。特に放熱性に優れた Silicon 基板を用いた微小デバイスでは、世界最高の J_{max}>1MA/cm²以上の電流密度を達成した。さらに、J-V 特性の電極サイズ依存性を比較した ところ、低電流密度域(J≤10³mA/cm²)ではどの電極サイズにおいても類似の J-V 特性を示す のに対して、高電流密度域においては J-V 特性に顕著な違いが現れることが確認された。こ れらの特異な J-V 特性の違いは、デバイスサイズに依存してキャリヤートラップの濃度が異 なることを示唆している。また、電流励起発光が可能な pn 接合型有機積層薄膜構造におい ても、積層界面への混合層層の導入によって~1,000A/cm²に達する高電流密度が実現できた。

4. 電流励起可能な有機レーザーデバイス構造

有機半導体レーザー実現のためには、大別して有機薄膜積層構造(OLED 型)と FET(Field effect transistor)構造が考えられる。OLED 型では、電子とホール及び生成した励起子を発光

層内部に有効に閉じ込めるためにダブルヘテロ構造を基本構造として考える。このデバイ ス構造は OLED の延長線上にあるため、これまでの有機 LED の設計指針が生かせること、 有機材料の選択の幅が比較的広いことが特徴として挙げられる。ただし、有機層が~100nm と薄いために、陰極として金属電極を用いた場合、電極での伝搬ロス(光吸収)が大きく、 光を有効に導波することができない問題点が生じる。そこで、ITO 等の透明電極を陽極と陰 極の両方に用いる必要がある。本研究では、有望なデバイス構造の一つとして、ITO(30nm)/α-NPD(20nm)/CBP:BSB[6wt%](70nm)/BCP(20nm)/Alq₃(20nm)/MgAg(X=1~3nm)/ITO(30nm) の 透 明型デバイス構造を提案した。光励起実験の結果、MgAg 層の膜厚が 1nm から 3nm の間 では、明瞭な ASE が観測された。特に、MgAg 膜厚が 1nm においては、最も低い ASE 閾値 9.0±1.8µJ/cm² が得られ、光励起下においてではあるが、電流励起可能なデバイス構造 での ASE が実現された。

さらに、OLED 構造に加え、FET 構造でも発光デバイスを構築できるようになった。トラ ンジスタの活性材料として低閾値でのレーザー発振が可能な Spiro-BSB-Cz を用いることに よって、線状の EL 発光に成功した。発光性トランジスタの作動メカニズムは、Spiro-BSB-Cz が p 型半導体特性を示すことから、ゲート電圧の印加によってホールが電極と有機層の間 に蓄積され、ソース・ドレイン間の電圧を上昇させることにより、ドレイン電極近傍でピ ンチオフ点と呼ばれるホール蓄積が排除された領域が形成される。そして、このピンチオ フ点領域にドレイン電極との界面に強電界が形成され、電子注入が促進されると考えられ る。現在の外部 EL 量子効率は 0.1%程度であり、さらに、EL 効率を向上するために、ambipolar 性の実現が必要である。トランジスタ構造による EL 発光は光共振器の導入など光学的な設 計の自由度が高く、有機半導体レーザーに適したデバイスであることを明らかにした。

5. 高電流密度下での励起子 annihilation 過程

光や電気励起によって分子励起子を高密度で生成すると通常の濃度では見られない励起 子間の相互作用が生じる。光励起下においては、一重項一一重項励起子失活(Singlet-Singlet Annihilation:SSA)や三重項一三重項励起子失活(Triplet-Triplet Annihilation:TTA)が活発に生じ ることが知られている。一方、電流励起下では、これらの現象に加えて、一重項励起子-電荷消滅機構(Singlet-Polaron Annihilation:SPA)が発生し、これらの Annihilation 現象がレーザ 一発振の障害となる。有機レーザー素子構成である ITO/α-NPD/CBP+BSB(6wt%)/BCP /Alq₃/MgAg/ITO 素子は、電流密度の上昇と共に急速に EL 量子効率が低下する様子が観測さ れる。この現象は、SPA モデル (η_{sp}/η₀ = 1/(1+(J/J_e)^(1/(m+1))))によるフィッティングと良好 な一致を示すことから、電流密度の上昇に伴い、過剰な電荷と励起子が非放射失活的な非 放射的な相互作用を生じ、励起子失活が生じていることが帰属された。このモデルに基づ き 1000A/cm²以上での発光効率を予測すると、このデバイス構造での ASE 閾値を電流密度 に換算した値である 3840A/cm²では、外部量子効率が 0.1%まで低下する。電流励起による ASE を実現するためには、polaron 失活による発光効率低下の抑制が不可欠であり、有機層 中での電荷トラップを抑制する新たなデバイス構造の提案が必要であることがわかった。

そこで本研究では、素子中に存在する有機-有機ヘテロ界面を無くし、界面に生じる励 起子 - Polaron 消滅を抑制することを目的とし、有機ヘテロ界面を除去した単層型 OLED を 作製した。発光材料に BSB-Cz を用い、ITO/MoO₃:BSB-Cz/BSB-Cz/Cs:BSB-Cz/Al と ITO/MoO₃/BSB-Cz/Cs:BSB-Cz/Ag のデバイス構造を持つ単層型素子を作製した。これらのデ バイスにおいては、電流密度 1A/cm² ~10A/cm²の高電流注入下においても、ほぼ一定の外 部量子効率を観測することに成功した。これは、キャリア注入と再結合のキャリアバラン スが一定で、励起子-ポーラロン消滅が抑制されていることを示している。また、単層型素 子の光励起による ASE 発振を測定することにも成功した。ASE 発振閾値は E_{th}=24.3µJ/cm² を示した。高い屈折率のITOとホール注入領域が薄いために光の伝搬ロスが小さいことと、 厚い電子注入領域が金属電極界面での光吸収を減らすためのバッファ層となっているため に、ASE 発振したと考えられる。電流励起に関しては、材料・デバイス構造の最適化など、 更なる検討が必要である。

6. Cutoff モードを利用したレーザー発振

近年、光導波路において、カットオフモードによる端面発光が著しく小さい利得閾値を 有することが見出されており、これを有機発光デバイスにおける新たな光増幅の機構とし て利用することができると考えられる。電流励起有機レーザーダイオードへの展開を目的 として、極めて低いASE閾値を有するBSB-Czを用い、カットオフモードによる端面発光の 光学現象を検討した。BSB-Cz膜からの端面発光スペクトルは、最適のcutoff膜厚において著 しく狭帯域化したバンドが見られ(最小半値幅<4nm)、強い偏光特性(TEモード)を有し ていることが分かった。ピーク波長は膜厚変化に伴いシフトするとともに、位相整合条件 式における次数の変化に従って遷移し、出射角~0°のカットオフ波長計算値とほぼ一致した。 レーザー不活性であるAlq₃膜においてもカットオフ波長におけるピークは観測されたが、そ のバンド幅は比較的大きく、BSB-Cz膜のエッジ発光が弱い光照射強度下でも増幅している 可能性を見出した。

さらに、BSB-Czを発光材料とした電流励起デバイス端面からの狭帯域発光について検討 した。素子構造は、Glass/ITO(30nm)/7wt%-MoO₃:BSB-Cz(10nm)/BSB-Cz(*d*nm)/20wt% -Cs:BSB-Cz(70nm)/Ag(100nm)(*d*=120,157,180nm)からなり、電流励起下での端面発光スペク トルおよびその偏光特性を測定した。光励起の場合と同様に著しく狭帯域化したバンドが 見られ、TE偏光していることが分かった。ピーク波長がBSB-Czの0-1遷移に近づくにつれ半 値幅は6.5nmまで小さくなった。端面からの狭帯域発光バンドは単調には比例せず傾きが増 加し、強度が相対的に大きくなる傾向が見られた。一方、Alq3を用いた単層型デバイスでは 同様の現象は確認できなかった。BSB-Czの屈折率がITOよりも大きく、デバイスの有機層 膜厚が厚いため、電流励起においてもカットオフ現象が起きていると結論した。さらに、 ASE閾値が低いBSB-Czを用いているため、電流励起下においてカットオフモードによる光 増幅が起きている可能性を確認した。

2 研究構想及び実施体制

(1)研究構想

有機半導体レーザーの実現とデバイス物理の解明を目指し、研究テーマを主に5分 野に分類して研究を行った。

I. 有機レーザー活性材料の開発-超低閾値でのレーザー作用の実現-

- (1) アリールアミン系材料における ASE 支配因子の探索(青色系レーザー材料)
- (2) スチリル系低閾値材料の合成と ASE 特性(緑色系レーザー材料)
- (3) ASE 閾値低下のための分子設計(励起吸収との相関)
- (4)新規フルオレン誘導体を用いた有機固体薄膜からの低閾値 ASE 発振
- (5) Ir 錯体の吸収・誘導放出断面積と増幅自然放出活性
- (6) ビススチリルベンゼン誘導体を用いた低閾値光励起型有機 DFB 固体レーザー

(有機デバイスへの共振器構造の導入)

- (1)ポリスチレン配列膜や高分子ハニカム構造を鋳型に用いた DBR 構造の作成
- (2)二光束干渉法を用いた波長オーダーの grating の形成
- (3) 電子線描画による微細構造の形成

II. 大電流密度実現への挑戦

- (1) CuPc 薄膜素子への大電流密度の注入とキャリア伝導機構
- (2) CuPc 薄膜素子への極微小デバイスによる超高電流密度の注入とキャリア伝導機構
- (3) 0LED 構造における低駆動電圧化と高電流密度の実現(1)
 α-6T 正孔注入層と Cs: PoPy2 電子注入層を用いた超低駆動電圧有機 EL 素子
- (4) OLED 構造における低駆動電圧化と高電流密度の実現(II)
- (5) 有機薄膜へのダメージレス透明電極の形成
- (6)光導波路型有機半導体レーザーの陰極構造の最適化
- (7) トランジスタ構造による有機レーザー素子への展開

III. 高電流密度下でのデバイス物理の解明

- (1) OLED へのパルス電圧印加による高電流密度の実現と励起子 annihilation の抑制
- (2) ビススチリルベンゼン誘導体を発光層に用いた有機 EL 素子の Roll-off 特性
- (3) 単層型 OLED の高電流密度下における Roll-Off 特性の改善

IV. Cutoff モードを利用したレーザー発振現象

- (1) CW 励起下における ASE 特性と励起吸収
- (2)カットオフモードに起因する有機膜端面からの狭帯域発光 -光学現象と理論解析-
- (3) カットオフモードに起因する有機膜端面からの狭帯域発光 -電流励起デバイスへの展開-

V. その他関連研究

- (1) ピリジン誘導体をホスト材料とする高効率有機リン光LED素子
- (2)環状シロキサン化合物を用いた高効率有機リン光LED素子
- (3) 厚膜有機 EL 素子用 HTL の開発とガラス転移温度との相関
- (4) TSC 測定による有機 EL デバイスの劣化機構の解析
- (5) Thermally stimulated current 法による C60/絶縁層界面の電子トラップ準位の測定

研究の流れ

(2)実施体制

有機半導体レーザーの実現とデバイス物理の解明を担当

3 研究実施内容及び成果

3. 1 有機半導体レーザーの実現とデバイス物理の解明 (九州大学 安達グループ)

(1)研究実施内容及び成果

I. 有機レーザー活性材料の開発-超低閾値でのレーザー作用の実現-

- (1)アリールアミン系材料における ASE 支配因子の探索(青色系レーザー材料)
- (2) スチリル系低閾値材料の合成と ASE 特性(緑色系レーザー材料)
- (3) ASE 閾値低下のための分子設計(励起吸収との相関)
- (4)新規フルオレン誘導体を用いた有機固体薄膜からの低閾値 ASE 発振
- (5) Ir 錯体の吸収・誘導放出断面積と増幅自然放出活性
- (6) ビススチリルベンゼン誘導体を用いた低閾値光励起型有機 DFB 固体レーザー

(I-1)アリールアミン系材料における ASE 支配因子の探索(青色系レーザー材料)

高い発光量子収率を有し、さらに電流励起可能な分子骨格であるアリールアミン誘導体の近紫外~青色領域での増幅自然放出光 (Amplified spontaneous emission: ASE) について検討を行った。特に、CBP、TPDが2µJ/cm²以下の低い ASE 閾値を示す一方、α-NPDは ASE 不活性であることを見出した(FIGI-1)。さらに、ASE 閾値低減に対する分子設計指針を得るべく、各誘導体の発光特性を精査することによる ASE 支配因子の特定と分子構造との相関について検討を行った。5 種類の誘導体 CBP, TPD, α-NPD, β-NPD, PPD の蒸着薄膜 (膜厚 100 nm) を作成し、窒素ガスレーザー(λ = 337 nm) 励起による ASE 測定、積分球による量子収率測定、5~300 K における発光強度及び発光寿命測定を行った。量子収率、発光寿命より求

めた放射速度定数 (kr) の比較において、ASE 活性である CBP, TPD ($k_r = 8.7 \times 10^8 s^{-1}$, 6.8 × 10⁸s⁻¹) に対し、不活性である α-NPD, β-NPD, PPD は $k_r = 0.8, 1.5, 0.8$ (× $10^8 s^{-1}$)と小さい値を 示した(Table I-1)。ここで kr は吸収スペクトル の面積より求められる振動子強度 (Oscillator strength: OS) に比例すると考えられることか ら、各誘導体の吸収スペクトルに対し Gaussian による成分分解を行った結果、α-NPD、β-NPD、 PPD において最長波長側に小さなピークの存 在が確認された。最長波長成分の OS の相対値 は、CBP、TPDの7,11(×10⁷)に対し、α-NPD、 β-NPD、PPD ではそれぞれ 2.2, 3.3, 1.5 (× 10⁷) となり、kr値と良好な一致を示すことがわかっ た。この OS の差異について、 α -NPD、 β -NPD、 PPD に存在する縮合環の立体障害による炭素 $- 窒素結合角のねじれが窒素上の lone pair の \pi$ 共役系への参加を阻害し、遷移の n-π*性を高め た結果である結論した。また、HOMO-LUMO についても、CBP、TPD の場合 HOMO、LUMO 共に biphenyl 上に局在化しているのに対し、 α-NPD、β-NPD、PPD では LUMO は縮合環上 にあり、両者で異なった遷移を起こす可能性が 示された。

FIGI-1: Blue organic lasing materials

Compound	$\lambda_{ m fmax}$ (nm)	λ_{ASE} (nm)	$\eta_{\rm f}$	$\tau_{\rm f}$ (ns)	${k_{\rm f}}^a_{ m (10^8 s^{-1})}$	E_{th} (μ J/cm ²)	$\Delta G_{ASE}{}^{\boldsymbol{b}}$
CBP	393	394	0.61 ± 0.04	0.7	8.7 ± 0.6	1.3 ± 0.2	13
mCBP	400	401	0.49 ± 0.03	1.4	3.5 ± 0.3	1.7 ± 0.3	4.0
dCBP	409	406	0.60 ± 0.02	1.1	5.4 ± 0.2	1.5 ± 0.3	7.8
DPABP	419	423	0.44 ± 0.02	0.7	6.2 ± 0.3	1.3 ± 0.2	13
TPD	424	424	0.41 ± 0.02	0.6	6.8 ± 0.3	1.8 ± 0.3	12
α-NPD	445		0.29 ± 0.02	2.2	1.3 ± 0.1		

^aRadiative decay rate k_f was calculated by η_f/τ_f . ^b ASE gain is normalized assuming that the slope of the non-ASE region is unity.

(成果論文)

"Ultraviolet amplified spontaneous emission from thin films of 4,4'-bis(9-carbazolyl)-2,2'-biphenyl and the derivatives", Appl. Phys. Lett., 84, 2724-2726 (2004)

Y. Kawamura, H. Yamamoto, K. Goushi, H. Sasabe and C. Adachi

"Simple Accurate System for Measuring Absolute Photoluminescence Quantum Efficiency in Organic Solid-State Thin Films", Jpn. J. Appl. Phys., 43, 7729-7730 (2004)

Y. Kawamura, H. Sasabe, and C. Adachi

(I-2)スチリル系低閾値材料の合成とASE 特性(緑色系レーザー材料)

レーザー活性層に用いる材料候補として、低閾値を示すスチリルベンゼン誘導体につい て検討を行った。特に、CBP にスチリルベンゼン系蛍光材料 (SBD)を 6wt%ドープした薄膜 を用い、光励起下での ASE 特性を調べ、ASE 活性の支配要因を分子構造設計の観点から検 討した。

その結果、特に低い閾値を示す骨格として dimer 骨格の bis-styrylbenzene derivatives (BSB) を見出した。ASE 閾値 (E_{th})は~1.0µJ/cm² の低い値を示し、他のヘテロ環やアゾメチン骨格 に比べ、極めて低い閾値を示す骨格であることがわかった。一方、ヘテロ環を含有する分 子は ASE 閾値が 20~

100µJ/cm² と高くなる傾 向にあり、アゾメチン骨 格は>100µJ/cm²の励起 エネルギーを与えても 発光スペクトルの狭帯 域化(narrowing)が生じず ASE は起こらなかった。

ASE 閾値の支配因子 を解明するために PL 絶 対量子効率 (∮_f)、蛍光寿 命 (τ_f)、自然放射失活速 度定数 (k_r) と ASE 閾値 の関係、 Triplet-Triplet absorption、n-π^{*}遷移の自 己吸収による ASE の抑 制原因について検討し た。その結果、ASE特性

FIG1-2: Molecular structures of bis-styrylbenzene derivatives (BSB)

を示す分子は、 ϕ_f 、 τ_f では ASE 閾値との直接的な相関は得られなかったが、 k_r とは大きな相 関が見られた。低閾値材料では kr~8×10⁸s⁻¹、高閾値材料では kr~4×10⁸s⁻¹、ASE 不活性な材料 では $k_{r} \sim 1 \times 10^8 s^{-1}$ となり、 k_r の大きさで閾値の大小を判別できることがわかった。また、 Triplet-Triplet absorption は発振波長領域に存在しなかったことから、ASEの阻害となってい る原因は Triplet-Triplet absorption ではないことがわかった。さらにヘテロ環を含有する高閾 値材料は n-π*遷移による自己吸収が ASE の抑制原因であることがわかった。以上の結果よ り、閾値を低下させるためには kr を向上させるのが有効であることから、蛍光量子効率の 向上と蛍光寿命の低下が必要であることが材料設計指針として得られた。そこで、蛍光量 子効率の向上と蛍光寿命の低下を目指した究極の ASE 活性材料を目指し、新規 bis-styrylbenzene (BSB)の合成と ASE 特性の検討を行った。約 50 種類に及ぶ新規 BSB 材料 の合成を行ない、特に 4,4'-bis[(N-carbazole)styryl]biphenyl (BSB-Cz)が極めて優れた ASE 特性 を有する事を見出した。BSB-Cz は発振波長 (λ_{ASE})=461nm、E_{th}=0.5±0.1 μJ/cm² であり、これ まで検討したスチリル系蛍光材料の中で最も低い閾値を示した。PL 強度、発光寿命は温度 特性を示さないことから、非放射失活が抑制されていることがわかった。蛍光寿命は τ~1.0±0.01 ns と非常に短い値を示し、蛍光量子収率も 100%である究極の材料であることが 確認された。また、放射失活速度定数も $k_r=1 \times 10^9 s^{-1}$ に達する非常に大きな速度定数を有す ることがわかった。

Table I-2: Summary of ASE wavelength (l_{ASE}), ASE threshold (E_{th}), absolute PL efficiency (f_{PL}), PL transient lifetime (t_f), and radiative decay rate (k_r) of 6-wt%-styrylbenzene derivative in a CBP host are summarized. In the case of SBD6~9, no ASE was observed and the PL peak wavelengths are summarized in the parenthesis. In the case of SBD3 and 4, the ASE thresholds are were unclear, although an appreciable PL spectral narrowing was observed and therefore the E_{th} values correspond to the onset of the spectral narrowing.

Materials	_{ASE} (nm)	E _{th} (J/cm ²)	_{PL} (%)	_f (ns)	k _r (10 ⁸ s ⁻¹)
BSB1	528	0.90±0.05	93±2	1.2±0.03	7.8±0.3
BSB2	497	0.70±0.05	81±2	1.0±0.02	8.0±0.2
BSB3	514	4.0±0.1	65±3	0.9±00.7	7.1±0.6
BSB4 (BSB-Cz)	461	0.32±0.05	100	1.0±0.01	10±0.1
SBD1	474	1.2±0.1	62±2	1.8±0.01	3.4±0.2
SBD2	496	4.8±0.3	57±3	2.0±0.02	3.7±0.7
SBD3	455	9.3*±3	49±2	1.5±0.14	3.0±0.7
SBD4	504	90*±3	92±2	2.2±0.03	4.4±0.1
SBD5	443	91±5	91±4	2.1±0.07	4.2±0.4

(I-3) ASE 閾値低下のための分子設計(励起吸収との相関)

さらに、本研究では、ASE 活性な有機材料の励起状態吸収を測定することにより、ASE 発振閾値の支配因子の解明と励起状態吸収との相関を明らかにすることを目的とした。ス チリルベンゼン誘導体である BSB-Cz, SBD1, SBD6 を活性材料として CBP ホスト中に 6wt% の濃度で共蒸着法によりガラス基板上に 100nm 成膜し、窒素雰囲気下において、窒素ガス レーザー (337nm)を励起光源として用いて、発光スペクトル及び ASE 特性の測定を行った。 励起状態吸収は pump-probe 法を用いて測定した。

Fig. I-2 に強励起下における発光スペクトルと励起状態吸収スペクトルを示す。 $k_r = 3.4 \times 10^8$ s⁻¹を有する 6wt%-SBD1:CBP 薄膜ではパルス励起下において ASE 発振が生じ、発振閾値は $E_{th}=1.2\mu$ J/cm²であった。これは SBD1 の発光波長に triplet-triplet 励起状態吸収は存在するも のの、singlet-singlet 励起状態吸収が存在していないために誘導放出が有効に行われていることを示している。一方、6wt%-SBD6:CBP 薄膜においては、SBD1 と比較して大きな $k_r=3.6\times10^8$ s⁻¹を有しているにもかかわらず、明瞭な ASE 発振は観測されず、スペクトルの狭帯化のみが観測された。これは発光波長域に singlet-singlet 励起状態吸収が存在しているためであると考えられる。さらに、BSB-Cz の発光波長域において singlet-singlet、triplet-triplet 励起状態吸収が存在しないことがわかった。これらの結果は、 k_r に加え、励起状態吸収の存在が ASE 発振を支配する重要な因子であることを示唆している。

(成果論文)

"100% fluorescence efficiency of 4,4'-bis[(N-carbazole)styryl]biphenyl in a solid film and the very low amplified spontaneous emission threshold"

Appl. Phys. Lett., 86, 071110 (2005)

T. Aimono, Y. Kawamura, K. Goushi, H. Yamamoto, H. Sasabe, and C. Adachi

FIGI-3: Excited state absorption spectra of singlet and triplet excited states in SBP1(a), SBP6(b) and BSB-Cz(c).

(I-4)新規フルオレン誘導体を用いた有機固体薄膜からの低閾値 ASE 発振

これまでの研究から、ビススチリルベンゼ ン誘導体を活性材料とした有機固体薄膜が 非常に低いASE 閾値を示すことを見出した。 しかしながら、電流励起による発振閾値のさ らなる低下のためには、より一層の低閾値 ASE 発振を可能にする有機レーザー色素の 開発が必要である。本研究では ASE 発振閾 値の低下を目指し新規フルオレン誘導体に 注目し、強光励起下における ASE 発振特性 について検討を行い、ASE 発振に及ぼす置換 基効果について検討を行った。

フルオレン誘導体である BDF1(2,7-Bis (N,N-diphenylamino)-9,9-bis(1,1'-biphenyl-4-yl)-9H-fluorene),BDF2(2,7-Bis[4'-(N,N-diphenyl amino)-1,1'-biphenyl-4-yl]-9,9-bis(1,1'-bipheny

FIGI-4: ASE characteristics of BDF2

I-4-yl)-9H-fluorene)を活性材料として、CBP(4,4'-bis-(N-carbazole) biphenyl)ホスト中に 6wt% の濃度で共蒸着法によってガラス基板上に 100nm 成膜した。発光スペクトル及び ASE 特性 の測定は、窒素雰囲気下において、窒素ガスレーザー (337nm, 500ps, 20Hz)を励起光源とし て用いて行った。

Fig.I-4に6wt%-BDF2:CBP 共蒸着薄膜の発光強度の励起光強度依存性と発光スペクトルならびに BDF2 の分子構造を示す。励起光強度の増加に伴い、スペクトルの狭帯域化と発光強度の急激な増加が観測され、ASE 発振波長と閾値は、λ=451nm, E_{th}=0.18±0.05µJ/cm² (360W/ cm²)であった。この ASE 発振閾値は低分子系有機固体薄膜における ASE 発振閾値として、

これまで報告されている値としては最も低い値である。また、pump-probe 法により BDF2 の励起状態吸収を測定した結果、発光波長域には励起状態吸収は観測されなかった。これ らの結果より、6wt%-BDF2:CBP 共蒸着薄膜においては k_r=(1.29 ±0.1)x10⁹s⁻¹と非常に大きな 放射速度定数を有していること、さらに誘導放出断面積が発振波長において σ =3.2x10⁻¹⁶cm² と大きく、発光波長において励起状態吸収が存在しないために誘導放出が有効に生じ、 E_{th}=0.18±0.05µJ/cm²と非常に低い閾値が得られると結論する。さらに、この共蒸着薄膜にお ける net gain と損失係数の測定を行った結果、それぞれ γ =20±3cm⁻¹、 α =5.8cm⁻¹が得られ、こ の薄膜が高い gain と優れた導波路を形成していることが分かった。一方、BDF1 を活性材料 とした場合の ASE 発振閾値は E_{th}=1.5±0.1µJ/cm² のやや高い閾値を示した。BDF1 が高閾値 を示した原因は蛍光量子効率が ϕ =47%と低く、k_rが k_r=3.9x10⁸s⁻¹と小さいためであると考え られる。

さらに、新規 9,9'-spirobifluorene 誘導体である 2,7-bis[4-(*N*-carbazole)phenylvinyl]-9,9'-spiro bifluorene (spiro-BSB-Cz)を開発した。Spiro-BSB-Cz neat film では励起光強度の増加に伴い、

スペクトルの狭帯域化と発光強度の急激 な増加が観測され、ASE 発振閾値は Eth=0.43±0.05µJ/cm² (860W/cm²)を示し、 Spiro-BSB-Cz が neat film でも非常に低い ASE 発振閾値を示すことが分かった。さ らに Spiro-BSB-Cz をワイドエネルギーギ ャップを有する CBP ホスト中に 6wt%の 濃度でドープした薄膜における蛍光量子 収率はΦ_{PI}=99±3%、蛍光寿命はτ=0.85ns の優れた発光特性を示し、ASE 発振閾値 も E_{th}=0.11±0.05µJ/cm² (220W/cm²)の極め **て低い値を示した(FIG.I-5)。**この ASE 発 振閾値は低分子系有機固体薄膜における ASE 発振閾値としてこれまで報告されて いる値としては最も低い値であり、これ は 6wt%-Spiro-SBCz:CBP 共蒸着薄膜が k=1.1(±0.1)x10⁹s⁻¹の非常に大きな放射速 度定数を有しているためである。このよ うに、Spiro-BSB-Cz は電流励起に適した 優れたレーザー活性材料であることを見 出した。

FIG.I-5: ASE characteristics of Spiro-BSB-Cz: CBP film.

(成果論文)

"Very low amplified spontaneous emission threshold and electroluminescence characteristics of 1,1'-diphenyl substituted fluorene derivatives"

Optical Materials (in press, online available)

Hajime Nakanotani, Naoki Matsumoto, Hiroyuki Uchiuzou, Masakazu Nishiyama, Masayuki Yahiro and Chihaya Adachi

"Extremely low-threshold amplified spontaneous emission from thin film of 9,9'-spirobifluorene derivatives and their electroluminescence characteristics"

Advanced Functional Materials, (in press, online available)

Hajime Nakanotani, Seiji Akiyama, Masayuki Yahiro, Toshitada Yoshihara, Seiji Tobita and Chihaya Adachi

(I-5) Ir 錯体の吸収・誘導放出断面積と増幅自然放出活性

(リン光性を有する有機金属錯体の合成とレーザー作用の検討)

これまでに高いPL 量子収率を有するスチルベン系蛍光材料が有機半導体レーザーの発光

中心として良好な特性を示すことを明らかにしてきた。しかしながら蛍光系における問題 として電流励起時の励起子生成比の上限(~25%)が大きな制限になることから、OLED と 同様に励起三重項状態を経由するレーザー活性媒体の適用が発振閾値低減に有効であると 考えられる。そこで、発光中心として室温下ほぼ100%の Φ_{PL} を示す Ir 錯体系リン光材料を 用い DFB 共振器を導入した際の効果について検討を行った。また錯体の吸収断面積(σ_{abs}) 及び誘導放出断面積(σ_{se})、励起状態吸収を測定し錯体薄膜からの増幅自然放出の可能性に ついて考察した。

各錯体に対し濃度既知の溶液の吸収スペクトルより σ_{abs} を、また発光スペクトル、 Φ_{PL} 、 発光寿命より σ_{se} を算出した(屈折率は n = 1.7 と仮定)。Fig.I-6 は緑色リン光錯体 *fac*-tris(2-phenylpyridyl)iridium(III)[Ir(ppy)₃]の結果であるが、特に σ_{se} の最大値は 3.5×10⁻¹⁹cm² と、スチルベン系蛍光材料の値(~2×10⁻¹⁶cm²)に比べ小さいことが判った。これは本来禁 制である 3MLCT 遷移の性質を反映した結果と考えられるが、一方で 500 nm より長波長側 では σ_{se} が σ_{abs} を上回っていることから誘導放出による増幅の可能性が示唆される。そこで HeCd レーザー(325 nm)を用いた 2 光束干渉露光法により基板上にグレーティング(Λ = 335

nm, 深さ100 nm)を作成し、これを DFB 共振器とした際のスペクトル の変化について検討を行ったとこ ろ、Ir(ppy)₃(6wt%):CBP 薄膜(膜厚 200 nm)においてグレーティング部 分では544nm付近に2次の回折条件 に相当する先鋭化されたピークが 観測された(Inset of FIG.I-6)。しか しながら励起強度に対するスペク トル形状の変化は認められず、グレ ーティングの無い場合と同様に励 起強度上昇に伴う発光効率の低下 が観測された。これについて誘導放 出を抑制する過程(励起状態吸収) の存在が示唆された。

(成果論文)

in DFB

"100% phosphorescence quantum efficiency of Ir(III) complexes in organic semiconductor films"

Appl. Phys. Lett., 86, 071104 (2005)

Y. Kawamura, K. Goushi, J. Brooks, J. J. Brown, H. Sasabe and C. Adachi

"Intermolecular Interaction and a Concentration-Quenching Mechanism of Phosphorescent Ir(III) Complexes in a Solid Film"

Phys. Rev. Lett., 96, 017404 (2006).

Yuichiro Kawamura, Jason Brooks, Julie J. Brown, H. Sasabe, and C. Adachi

(I-6)ビススチリルベンゼン誘導体を用いた低閾値光励起型有機 DFB 固体レーザー

電流励起による有機半導体レーザーを実現するためには、活性材料の低閾値化、反転分 布を形成するために必要な高電流密度の注入・輸送が必要になる他、DFB や DBR などの共 振器構造の導入が必要になる。そこで本研究では、BSB-Me(2,5-bis(p-(N-phenyl-N-(m-toryl)amino)styryl)benzene), BSB-OMe(1,4-dimethoxy-2,5-bis(p-(N-phenyl-N-(m-toryl)amino) styryl)benzene)を活性材料とし、干渉露光法を用いて作製した DFB 共振器を導入した光導波 路の Lasing 特性について比較検討をした。

DFB 共振器は、ガラス基板上にスピンコートされたレジスト材を波長 325nm の励起光を 用いた二光束干渉露光法を用いることにより作製した。その後、作製した DFB 共振器上に、 BSB-Me、BSB-OMe をゲスト分子とし、CBP(4,4'-bis-(N-carbazole) biphenyl)ホスト中に 6wt% の濃度で共蒸着法を用いて 200nm 成膜し、窒素雰囲気下において励起光源として窒素ガス

レーザー (337nm)を用い、発光 スペクトル及び Lasing 特性の 測定を行った。FIG.I-7 に得ら れた BSB-Me の発光スペクト ルと溶液中での吸収断面積を 示す。DFB 共振器の周期を 270 ~290nm の間で変化させるこ とにより、491.3~519nm の間 で lasing を観測することに成 功した。閾値は DFB 周期 280nm、発振波長 507.8nm の場 合(0-1 遷移ピークに対応)に最 も低く Eth=0.78µJ/cm² を観測 した。さらにITO基板上にDFB 共振器を作製し、その上に電 流励起可能なデバイス構造と

FIG.I-7: Lasing characteristics of BSB-Me in DFB structure.

して、α-NPD(30nm)/6wt%-BSB-Me:CBP(100nm)/BCP(20nm)/Alq₃(30nm)/MgAg(2.5nm)/ITO(20 nm)の構造を作製し、素子端面からのレーザー発振の観測にも成功した。発振波長は 502.5nm であり、発振閾値は E_{th}=7.4µJ/cm² であった。この閾値より電流密度を計算すると、閾値電 流として約 J_{th}=840A/cm² を見積もることができる。

その他、高分子の相分離過程を用いての光共振器構造の作成も検討したが、光学ピッチの制御性に劣り、低閾値には至らなかった。

||. 大電流密度実現への挑戦

(II-1)CuPc 薄膜素子への大電流密度の注入とキャリア伝導機構

有機レーザーダイオードを実現するためには電流励起により反転分布を形成させる必要が ある。反転分布を形成させるための光励起エネルギーを電流密度に換算すると BSB 素子の結 果より、電流密度 J~1000A/cm²程度のキャリア注入が必要となる。しかしながら、従来の基本 的な α-NPD/Alq₃の OLED 構造では最大電流密度 J_{max}~10A/cm²程度でデバイスは破壊してしま い電流励起による反転分布は形成出来ない。そこで本研究では、まず 1000A/cm²程度の高電流 密度まで耐えるデバイス構造設計、有機

密度まで耐えるデハイス構造設計、有機 材料設計について検討した。アモルファ ス状の有機薄膜にどの程度まで電流を 流せるかを確認するために単層膜につ いて検討した。ITO/有機薄膜/MgAg (100nm)/Ag(10nm)を真空蒸着法により 作成し、半導体パラメーターアナライザ ー(Agilent 4155C)を用いてJ-V特性を測 定した。有機材料は Alq₃、α-NPD、TPD、 CuPc、PtOEP、レーザー色素である BSB を用い、J_{max}の膜厚依存性を確認するた めに各々d=100nm、50nm、25nm につい て検討した。また陰極サイズ依存性を観 測するために、陰極半径 r=100µm、50µm、 40µm、25µm について検討した。

 J_{max} を各材料について比較したところ、 J_{max} は大きな材料依存性を示した

FIG.II-1: J-V characteristics of ITO/CuPc/MgAg devices with various cathode sizes.

(FIG. II-1)。さらに各材料において J_{max} は膜厚依存性を示すが、素子が破壊する J_{max} における 最大消費エネルギー(W_{max}=J_{max}·V_{max})は膜厚に依存せず一定値を示すことを見出した。W_{max} は Alq₃ が 106±32W/cm²、 α -NPD が 184±2W/cm²、TPD が 106±26W/cm²、CuPc が 470±209W/cm²、 PtOEP が 277±120 W/cm²、BSB が 125±15 W/cm²であった。このように、薄膜化することによ り J_{max} が上昇する結果が得られた。また、有機層の膜厚が 100nm、75nm では J-V 特性は直 線的であり Transport-limited の伝導特性(TCLC 機構)を示し、膜厚が 50nm、25nm では Injection-limited の特性(Tunneling 機構)を示すことから、キャリア伝導の律速過程が膜厚によ り変化することが示唆された。そして、陰極半径を変化させた場合の J-V 特性において、ド ットの面積を小さくすることで J_{max} は向上し、有機層の膜厚 d=25nm 及び陰極半径 r=25µm では J_{max}=1053A/cm²を達成した。この理由としてドットあたりのジュール発熱が小さくなり、 高電流密度が実現できたと考えられる。デバイス破壊についてのメカニズムとしては、高電 流密度を流すことでジュール熱が発生し格子振動が活発化し、それによりキャリアの進行が 妨げられ、薄膜内に形成された空間電荷により放電が生じるためと考えている。

(成果論文)

"Carrier Injection and Transport of Steady-State High Current Density Exceeding 1000A/cm² in Organic Thin Films"

Jpn. J. Appl. Phys., (Express Letter), 42, L1353-1355 (2003)

W. Yokoyama, H. Sasabe and C. Adachi

(II-2) CuPc 薄膜素子への極微小デバイスによる超高電流密度の注入とキャリア伝導機構

以上の結果から有機薄膜に高電流密度を注入するためには、素子面積の低減と高熱伝導 率基板の使用が有用であることを明らかにした。本研究では、さらにフォトリソグラフィ ーと電子線リソグラフィを用いて素子面積を S=1,000,000µm²から S=0.04µm²に制御した際 の電流密度-電圧(J-V)特性と最大電流密度の向上について検討した。高電流密度駆動に対す る耐久性やJ-V特性の機構解析を行うためのモデル素子として、CuPc薄膜素子を作製した。

ITO 基板(陽極)にレジスト膜をスピンコートし、紫外線もしくは電子線露光を行った。 現像液に浸漬することで、レジスト膜に正方形の貫通孔を形成させた。残ったレジスト膜 は良好な絶縁層として使用でき、貫通孔に素子を作製することで、素子サイズを正確に定

義することが可能となった。作製した貫 通孔の上に CuPc 活性層, MgAg 陰極の順 に真空蒸着することで、素子構造 ITO/photoresist insulating layer with a hole/CuPc(25nm) /MgAg(200nm)/Ag(10nm) の CuPc 単層素子を構築し、室温下で DC 駆動により J-V 特性を評価した。FIG.II-2 に素子面積を S=1,000,000µm² から S=0.04um²に変化させた際の CuPc 薄膜素 子の J-V 特性を示す。素子面積を S=1,000,000µm²から S=0.04µm² に減少さ せることで、素子破壊に達する最大電圧 が V_{MAX}=5.0V から V_{MAX}=14.1V に増加し、 最大電流密度も J_{MAX}=7.6A/cm² から J_{MAX}=3.64MA/cm²に増加した。また、低熱 伝導率ガラス基板(1.1W/mK)から高熱伝 導率シリコン基板(148W/mK)に置き換え ることで、さらに最大電流密度が $J_{MAX}=3.64MA/cm^{2}$ から $J_{MAX}=6.35MA/cm^{2}$ (V_{MAX}=16.9V)に増加した。この最大電圧 と最大電流密度の増加は、素子サイズを

FIG.II-2: J-V characteristics of ITO/photoresist insulating layer with a hole/CuPc(25nm) /MgAg (200nm)/Ag(10nm) devices with small current flow area.

減少させることで、素子内で発生したジュール熱が周囲のレジスト膜や電極に効率よく取 り除かれ、熱による素子破壊が抑制されたためである。また、ITO 陽極からの正孔の輸送の 律速過程が、低電圧側から(i)Ohm current, (ii)Shallow-trap space-charge-limited current (ST-SCLC), (iii)Trap-free SCLC (TF-SCLC) の順に遷移していることがわかる。ホールのみ(も しくは電子のみ)のキャリア伝導では、TF-SCLC が最も電流を流すプロセスであり、 J=1MA/cm²以降に現れているプロセスは、MgAg 陰極からの電子と ITO 陽極からの正孔の 両方が注入された(iv)Two-carrier injection cubic law に従うキャリア伝導と考える。一般的な 有機 EL 素子は J=10A/cm²程度で素子の破壊が生じてしまうが(図中点線が J=10A/cm²を示 す)、素子サイズをサブミクロンまで小さくすることで J=1MA/cm²を超えるキャリアを有機 薄膜に注入・輸送できただけでなく、通常は素子破壊のために観測できない超高電流密度 におけるキャリアの輸送過程を解析できるようになった。

(成果論文)

"Extremely-high-density carrier injection and transport over 12000A/cm² into organic thin films" Appl. Phys. Lett., **86**, 083502-1-083502-3 (2005) H. Yamamoto, H. Kasajima, W. Yokoyama, H. Sasabe, and C. Adachi

"Space-Charge-Limited Currents in Copper Phthalocyanine Thin Films: Current Density Range between nA cm⁻² and MA cm⁻²"

J. Appl. Phys. (in preparation)

T. Matsushima and C. Adachi

(II-3)0LED 構造における低駆動電圧化と高電流密度の実現(I)

(α-6T 正孔注入層とCs:PoPy2 電子注入層を用いた超低駆動電圧有機 EL 素子)

有機 EL 素子の駆動電圧を低減させることにより、(1)有機 EL 素子のエネルギー変換効率の向上、(2)有機薄膜素子で得られる最大電流密度(J_{MAX})と最大電圧(V_{MAX})の積(P_{MAX}=J_{MAX}×V_{MAX})には相関があり、駆動電圧の低減によって電流励起型有機固体レーザーを実現するために必要な高電流密度を有機薄膜に注入・輸送させることである。本研究では、α-6T 正孔注入層とCs:PoPy2電子注入層を用いることで、有機 EL 素

子の駆動電圧の大幅な低減に成功した。

UV-ozone 洗浄した ITO 基板表面に、有機薄膜 と金属電極を真空蒸着法で製膜することによって 以下に示す素子構造を構築した。Device A: Glass/ITO (100 nm)/a-NPD (50 nm)/1mol%-DCM-doped Alq₃ (30 nm)/Alq₃ (20 nm)/MgAg (100 nm), Device B: Glass/ITO (100 nm)/a-6T $(40 \text{ nm})/\alpha$ -NPD (10 nm)/1mol%-DCM-doped Alq₃ (30 nm)/33mol%-Cs-doped PoPy₂ (20 nm)/Al (100 nm)上記素子の電流密度-電圧-外 部量子効率-エネルギー変換効率(J-Vηext-ηpower)特性を評価した。FIG.II-3にJ-V特性を 示す。従来のa-NPD と Alq3 の替わりにa-6T と Cs:PoPy₂をキャリア注入層に用いることで、 J=100mA/cm² を素子に注入するために必要な駆 動電圧が 8.9V(Device A)から 3.4V(Device B)ま で低減することができた。この値はこれまでに報 告された有機 EL 素子において最も低い駆動電 圧である。Hole-only もしくは Electron-only 単層 素子を構築し、J-V 特性を評価した結果、α-6T と Cs:PoPy2 は代表的なキャリア輸送材料である

FIG.II-3: J-V characteristics of Device A: Glass / ITO (100 nm)/ α -NPD (50 nm)/1mol%-DCM-doped Alq₃ (30 nm)/Alq₃ (20 nm)/MgAg (100 nm), Device B: Glass/ITO (100 nm)/ α -6T (40 nm)/ α -NPD (10 nm)/1mol%-DCM-doped Alq₃ (30 nm)/33mol%-Cs-doped PoPy₂ (20 nm)/Al (100 nm).

α-NPD や Alq₃よりも数桁高いキャリア注入・輸送能を示した。このα-6T と Cs:PoPy₂の高いキャリ ア注入・輸送能は、α-6T が高い正孔移動度(~0.1 cm²/Vs)を持つことや Cs:PoPy₂ が電荷移動 錯体を形成するためであり、このことが有機 EL 素子の駆動電圧の低減に寄与していると考 える。また、駆動電圧の劇的な低減に伴って、エネルギー変換効率を約 3 倍に向上させる ことに成功した。

(成果論文)

"Extremely low-voltage driving of organic light-emitting diodes with a Cs-doped phenyldipyrenylphosphine oxide layer as an electron-injection layer"

Appl. Phys. Lett., **86**, 033503 (2005)

T. Oyamada, H. Sasabe, C. Adachi, S. Murase, T. Tominaga, and C. Maeda

"Extremely low-voltage organic light-emitting diodes with p-doped alpha-sexithiophene hole transport and n-doped phenyldipyrenylphosphine oxide electron transport layers" Appl. Phys. Lett. **89**, 253506 (2006)

T. Matsushima and C. Adachi

(II-4) 0LED 構造における低駆動電圧化と高電流密度の実現(II)

- 有機/有機ヘテロ界面混合による有機 EL 素子の駆動電圧の低減-

さらに、多層積層構造の OLED において、有機/有機ヘテロ界面を等モル比で混合させる ことで有機 EL 素子の駆動電圧の低減に成功した。本研究では、有機/有機ヘテロ界面混合 による駆動電圧の低減特性と電流励起有機レーザー素子を目指したヘテロ界面混合有機 EL 素子の高電流密度・高輝度特性について検討した。

真空蒸着法を用いてガラス基板上に以下の素子構造の有機 EL 素子を構築し、素子特性を 比較した。

(A): ITO(100nm)/NPD(40nm)/BST-doped POPy₂(20nm)/Alq₃(30nm)/LiF(0.5 nm)/Al(100 nm)

(B): ITO(100nm)/NPD(35nm)/NPD:POPy₂(5nm)/BST-doped POPy₂(20nm)/POPy₂:Alq₃(5nm)/Alq₃(25nm)/LiF(0.5 nm)/Al(100 nm)

(C): ITO(100nm)/6T(20nm) /NPD(20nm) /BST-doped POPy₂(20nm)/POPy₂(30nm)/LiF(0.5 nm)/Al(100 nm)

(D): ITO(100nm)/6T(20nm)/6T:NPD(5nm)/NPD(10nm)/NPD:POPy₂(5nm)/BST-doped POPy₂(20nm)/POPy₂(30nm)/LiF(0.5 nm)/Al(100 nm)

(B)は(A)、(D)は(C)のヘテロ界面混合素子である。全ての素子のトータル膜厚は一定(90nm) とし、素子面積は 785,000µm² とした。

全ての素子からBSTドーパントからの緑色発光が観測でき、最大外部量子効率は1.3-1.7% であった。これら素子の電流密度-電圧特性をFig. II-4 に示す。有機/有機ヘテロ界面を混合していない素子(A)と(C)と比較して、ヘテロ界面を混合させた素子(B)と(D)の駆動電圧を低減させることに成功した。電流密度 100mA/cm² に必要な駆動電圧は 7.7V(A)、6.8V(B)、4.5V(C)、3.6V(D)であった。一般的なキャリア輸送層である NPD と Alg3の替わりに、高い

キャリア輸送能を持つ 6T と POPy2を キャリア輸送層として用い、さらに有 機/有機ヘテロ界面を混合させること によって、素子(D)で非常に低い駆動 電圧 3.6V (at 100mA/cm²)を得ること ができた。混合層中で2種類の有機分 子の接触面積が大きくなったことで ヘテロ界面におけるキャリア注入が 改善され、有機 EL 素子の駆動電圧が 低減されたと考えている。

これまでの研究で、有機レーザー素 子の実現に必要な kA/cm² の電流密度 を有機薄膜に注入するためには、(1) 素子面積を低減させる、(2)高熱伝導率

FIG.II-4: J-V characteristics of OLEDs having organic mixed interfaces.

FIG.II-5: J-V characteristics of ITO(100nm)/ FIG.II-6: L-J characteristics of ITO(100nm)/6T POPy2(5nm)/BST-doped POPy2(20nm)/ POPy₂(30nm)/LiF(0.5 nm)/Al(100 nm).

6T (20nm) /6T:NPD(5nm)/NPD(10nm)/NPD: (20nm) /6T:NPD(5nm)/NPD(10nm)/ NPD:POPy2 (5nm)/BST-doped POPy2(20nm)/POPy2(30nm)/LiF (0.5 nm) /Al(100 nm).

基板を使用する、(3)駆動電圧を低減させるといった素子内で発生したジュール熱を抑制す る手法が有効であることがわかっている。有機/有機ヘテロ界面を混合した低駆動電圧素子 (D)の素子面積を 785,000µm²から 625µm²にフォトリソグラフィーを用いて減少させ、さら に低熱伝導率のガラス基板を高熱伝導率のサファイア基板に置き換えたところ、DC 駆動で 最大電流密度 1,100A/cm²、最大輝度 7,900,000cd/m²を達成することができた(FIG.II-5,6)。こ れらの値はこれまでに OLED で報告された中で最も高い値である。

(成果論文)

"Lowering driving voltages required for organic light-emitting diodes by using mixed organic/ organic heterojunction interfaces"

Jpn. J. Appl. Phys., 46, L861 - L863 (2007). Toshinori Matsushima and Chihaya Adachi

(11-5) 有機薄膜へのダメージレス透明電極 の形成

有機レーザーダイオードの実現のためには、 高効率透明 OLED の作製が不可欠である。特 に、ITO 等の透明陰極電極の製膜を有機層上へ ダイレクトにスパッタで形成する場合、低ダメ ージな製膜が必要とされている。従来の Planar 型のスパッタ製膜では基板に対して酸素プラ ズマが飛翔することによる有機層へのダメー ジが大きいこと、また、スパッタ成分の分布 に角度依存性が大きいなどの問題点もある。 そこで、プラズマをガン内に閉じ込めること によって Planar 型よりも低ダメージな製膜が 可能である Conical 型のターゲットを用いて 透明電極の製膜、OLED 特性評価を行った (FIG.II-7)。Conical ターゲットによる ITO 製膜 の最適化について詳細な検討を行った結果、 出力 50W において Ar: 6.0SCCM、O₂: 0SCCM の時にR=53.3Ω/□の最も低いシート抵抗値を 示した。 また OLED 素子を作成した結果、 RF 出力 R_f: 50~200W の広い範囲において外部量 子効率 η_{ext}=0.75%が得られた(FIG.II-8)。

FIG.II-7: Schematic view of conical and planer targets.

FIG.II-8: J-V characteristics of transparent OLEDS with different ITO cathode formation.

Conical 型では、比較的 high power においても有機層への低ダメージな製膜が可能であり高 出力、比較的短時間での製膜が可能であることがわかった。

(成果論文)

"Low-Damage Indium Tin Oxide Formation on Organic Layers Using Unique Cylindrical Sputtering Module and Application in Transparent Organic Light-Emitting Diodes"

Jpn. J. Appl. Phys., 45, L213-216 (2006).

Hidetoshi Yamamoto, Takahito Oyamada, William Hale, Shoichi Aoshima, Hiroyuki Sasabe, and Chihaya Adachi

(11-6)光導波路型有機半導体レーザーの陰極構造の最適化

有機半導体レーザーの構築において、 光導波路型のデバイス構造を用いた場 合、レーザー作用を妨げる一番大きな 要因に、陰極金属による伝播ロスが挙 げられる。そこで本研究では、伝播ロ スを抑制するために陰極に透明電極の ITO を用いた電流励起可能なデバイス 構造を構築し、光励起特性と透明デバ イスの電気特性の検討を行った。有機 層は真空蒸着法により、ITO は RF ス パッタ法 (20W, Ar: 11.4SCCM, O₂: 0.6SCCM)を用いて素子を作製した。光 励起は、窒素ガスレーザー(λ= 337nm) を用いて、不活性雰囲気下において、 素子の端面から放射される光を集光し ASE 閾値(P_{th})を求めた。デバイス構造 は、ITO(30nm)/α-NPD (20nm)/CBP:BSB [6wt%](70nm)/BCP(20nm)Alg₃(20nm)/M

FIG.II-9: ASE characteristics of ITO(30nm)/α-NPD (20nm)CBP:BSB[6wt%](70nm)/BCP(20nm)Alq₃(20n m)/MgAg(Xnm)/ITO(30nm).

gAg(Xnm)/ITO(30nm)である。発光層には、レーザー色素としてスチリルベンゼン系の BSB を用いた。また、ITO スパッタ時のプラズマから有機層を保護するために電子注入層として 超薄膜の MgAg を挿入した。電気特性は、ITO(110nm)/α-NPD(50nm)/ Alq₃(50nm)/MgAg(Xnm)/ ITO(100nm)のデバイスを作製し、J-V 特性、外部量子効率を測定した。MgAg 層は伝播ロス を考え、0nm、1nm、2.5nm、3nm、4nm、5nm の膜厚について検討した。

光励起実験の結果、電子注入層の MgAg が 4nm、5nm のデバイスでは金属による伝播 ロスが大きく ASE は得られなかったが、MgAg が 1nm から 3nm の間では、膜厚が厚く なるにつれて伝播ロスが大きくなるために若干閾値は上昇するが明瞭な ASE が観測さ れた。MgAg が 0nm では、 E_{th} =13.7±2.7µJ/cm² となり MgAg が 1nm、2nm の時に比べ閾 値の上昇が見られた(FIG.II-9)。これは、ITO スパッタ時に Alq₃ がダメージを受け界面 の乱れにより光の伝播ロスが大きくなったためであると考えられる。一方、電気特性 の測定から MgAg を挿入することでデバイスを電流駆動できることを確認した。MgAg の膜厚が ASE の観測が可能な 3nm の時、外部量子効率 η = 0.3%、最大電流密度 J_{max}= 8000mA/cm²を記録した。これらの結果から、電子注入層に超薄膜の MgAg 層を挿入す ることで、光導波路型構造を用いたデバイス構造によって電流励起による Lasing が実 現可能なことが示唆される。

さらに ITO 基板上に DFB 共振器を作製し、その上に電流励起可能なデバイス構造として、 α-NPD(30nm)/6wt%-BSB-Me:CBP (100nm)/BCP(20nm)/Alq₃(30nm)/MgAg(2.5nm)/ITO(20nm)の 構造を作製し、素子端面からのレーザー発振の観測にも成功した。発振波長は 502.5nm で あり、発振閾値は E_{th}=7.4µJ/cm² であった(FIG.II-10)。この閾値より電流密度を計算すると、 閾値電流として約 J_{th}=840A/cm² を見積もることができる。

有機積層薄膜を用いた有機半導体レ ーザー実現のためには、透明デバイスの 構築が必至であるが、未だ高効率な電子 注入の実現には大きな課題がある。本研 究では、Ce、Li、Rb などのアルカリ金 属を有機層と ITO 透明電極の間に挿入 し、透明性の高い電子注入電極の実現と 電子注入メカニズムの解明を検討した。 特に金属電極と有機層に Cs を挿入した デバイスにおいて、電子注入効率が Cs の膜厚に大きく依存し、Cs 膜厚が 0.5~ 3.0nmの時に著しく高効率な電子注入が 可能であることを見出した。また ITO 陰 極を用いたデバイスにおいても外部量 子効率1%に迫る高効率デバイスを実 現した。

FIG.II-10: Lasing characteristics of $ITO(30nm)/\alpha$ -NPD(20nm)CBP:BSB[6wt%](70nm)/BCP (20nm) Alq₃(20nm)/MgAg(Xnm)/ITO(30nm) with DFB structure.

(成果論文)

"Amplified spontaneous emission under optical pumping from an organic semiconductor laser structure equipped with transparent carrier injection electrodes" Appl. Phys. Lett., **84**, 1401-1403 (2003)

H. Yamamoto, T. Oyamada, H. Sasabe, and C. Adachi

(11-7) トランジスター構造による有機レーザー素子への展開

電流励起による有機半導体レーザーを実現するためには、KA/cm²以上の電流密度を素子 に注入し誘導放出を起こす必要がある。我々はこれまでにビススチリルベンゼン誘導体及 びフルオレン誘導体を活性材料とした有機固体薄膜が非常に低い ASE 閾値を示すことを見 出した。しかしながら、電流励起による発振閾値のさらなる低下のためには、より低閾値 ASE 発振を可能にする有機レーザー色素と高電流密度注入可能で ASE 発振可能なデバイス 構造を開発することが必要となる。そこで本研究では、9,9'-spirobifluorene 誘導体を活性材 料とする発光型有機トランジスタを作製し、それらの電流励起下におけるデバイス特性に ついて検討を行った。

FIG.II-11: Organic laser sutructures using waveguiding and FET architecture.

FIG.II-13: Light-emission from FET structure.

FIG.II-12: FET characteristics of Spiro-BSB-Cz.

FET の活性層としては、Spiro-BSB-Cz neat film を用いた。この薄膜は、ASE 発振閾値 E_{th}=0.43±0.05µJ/cm² (860W/cm²)を示し、spiro-BSB-Cz が neat film でも非常に低い ASE 発振 閾値を示すことが分かった。そこで、この材料を用い、トランジスタ構造への適用を検討 した。Souce- drain 電極として Cr/Au(50nm)を有する Si/SiO₂ (1µm)基板上に、真空蒸着法を 用いて spiro-BSB-Cz を 100nm 製膜し、有機トランジスタを作製した。チャネル長はL=0.6µm、 チャネル幅は W=1cm である。FIG.II-12(a),(b)にそれぞれ I_{DS}-V_{DS} 特性と外部量子効率 η_{ext} -I_{DS} 特性を示す。I_{DS} は短チャネル効果により明瞭な飽和特性は得られなかったが、ゲート 電圧による変調が観測された。さらに I_{DS} の増加とともに発光強度の増加を観測すること ができ、最大外部量子効率は η_{ext} =0.02%であった。また、最大電流密度は V_g=-100V の時に J=20A/cm² であり、FET 構造において高電流密度注入と EL 発光の観測が確認された (FIG.II-13)。

|||. 励起子 annihilation 過程の解明

(III-1) ビススチリルベンゼン誘導体を発光層に用いた OLED の Roll-off 特性

これまでの研究において、有機薄膜へ1000A/cm²以上の非常に高い電流密度の注入に成功 した。しかしながら、電流励起における問題点として、高電流密度域において励起子 annihilation が生じてしまうことが大きな問題点である。そこで本研究では、非常に低い ASE 発振閾値を示す BSB-Me(2,5-bis(p-(N-phenyl

発振阈値を示う BSB-Me(2,5-bis(p-(N-phenyl -N-(m-toryl)amino)styryl)benzene), BSB-OMe(1,4 -dimethoxy-2,5-bis(p-(N-phenyl-N-(m-toryl)amino)styryl)benzene), BSB-CN (1,4-dinitrile-2,5-bis(4-(bis(4-methoxyphenyl)amino)styryl)benzene)を発 光中心として用いた OLED 素子特性、特に高 電流密度域における励起子 annihilation につい て検討を行った。

真空蒸着法により glass/ITO/α-NPD(30nm)/6 or 8wt%-BSB:CBP (20nm)/BCP(20nm)/Alq₃(30 nm)/MgAg/Ag 構造の素子を作製し、OLED 特 性を測定した。BSB-Me, BSB-OMe, BSB-CN を 活性材料として用いた各 OLED 素子のη_{ext}-J 特 性を FIG.III-1 に示す。最大外部量子効率はそれ ぞれ、η_{ext}=3.7%, 3.7%, 2.3%と蛍光材料として

FIG.III-1: EQE-J characteristics of BSB based OLEDs.

は高い値を示した。しかしながら、 0.1mA/cm²以下の低電流密度域では外部量 子効率がほぼ一定であるのに対し、高電流 密度域においては急激な外部量子効率の 低下が観測された。このことは、高電流密 度域において、singlet-poralon、singletsinglet、singlet-heat annihilation による励起 子失活が活発に生じていることを示唆す る。各素子における効率の半減する電流密 度値は、それぞれ J_{T1/2}=107, 24, 15mA/cm² と BSB-Me を用いた素子が最も roll-off が 緩和されることが分かり、ドーパント分子 の HOMO レベルが浅い材料ほど、J_{T1/2} が 小さいことより、ドーパント分子による電 荷トラップが annihilation に関与している ことが示唆される。

FIG.III-2: EQE-J characteristics in ITO/α-NPD/ CBP+ BSB(6wt%)/BCP/Alq₃/MgAg/ITO device.

さらに、FIG.III-2 に透明デバイスである ITO/α-NPD/CBP+ BSB(6wt%)/BCP/Alq₃/MgAg/ITO のη_{ext}-J 特性を示す。このように、EL 量子効率が電流密度の上昇と共に急速に低下する様子 が観測される。この現象は、Singlet-polaron annihilation (SPA)モデル (η_{sp}/η₀ = 1/(1+(J/J_e)^ (1/(m+1))))によるフィッティングと良好な一致を示すことから、電流密度の上昇に伴い、過 剰な電荷と励起子が非放射失活的な非放射的な相互作用を生じ、励起子失活が生じている ことを意味している。この SPA モデルに基づき 1000A/cm²以上での発光効率を予測すると、 このデバイス構造での ASE 閾値を電流密度に換算した値である 3840A/cm²では、外部量子 効率が 0.1%まで低下する。電流励起による ASE を実現するためには、polaron 失活による 発光効率低下の抑制が不可欠である。有機層中での電荷のトラップを抑制するなど新たな デバイス構造の改善が必要である。

(成果論文)

"Singlet-singlet and singlet-heat annihilations in fluorescence-based organic light-emitting diodes under steady-state high current density"

Appl. Phys. Lett., **86**, 213506-1-213506-3 (2005) H. Nakanotani, H. Sasabe, and C. Adachi

(III-1) OLED へのパルス電圧印加による高電流密度の実現と励起子 Annihilation の抑制

基本的な OLED である Glass/ITO/α-NPD/Alq₃/MgAg/Ag のデバイス構造では最大電流密度

 $J_{max} \sim 50 A/cm^2$ 程度で素子が破壊される。一方、 高い熱伝導率を有する Sapphire 基板を用いるこ とにより最大電流密度は $J_{max} \sim 1 KA/m^2$ まで向 上すること示した。しかしながら、高電流密度 域においては、Singlet-Singlet annihilation や Singlet-polaron annihilation による励起子の解離、 さらには、ジュール熱による励起子の解離が生 じ(Singlet-Heat Annihilation, SHA)、EL量子効 率の低下が生じる。そこで本研究では、パルス 駆動により発熱を抑制することによって、高電 流密度の実現と励起子 Annihilation の抑制を試 みた。

真空蒸着法により、ガラスまたは Sapphire 基 板上に ITO(110nm)/α-NPD(50nm) /Alq₃ (50nm)/

FIG.III-1: J-V characteristics of OLEDs under pulse excitation.

MgAg(100nm)/Ag(10 nm)のデバイス 構造を作製し、パルス幅 5us、周期 50µs の Step パルスを素子へ印加し た。また、陰極サイズは r=500µm、 200µm、100µm、50µm について検討 した。通常の CW 駆動では、陰極半 径 r=50µm の時に J_{max}=29A/cm²であ るのに対し、パルス駆動により J_{max}=581A/cm²まで向上した。さらに、 Sapphire 基板の陰極半径 r=50µm に おける素子では、J_{max}=828A/cm²に達 成した。各陰極サイズにおける J_{max} を比較したところ、J_{max} は高電流密 度域(J>1A/cm²)において大きな陰極 サイズ依存性を示した。また、 r=500µm の場合、CW 駆動では高電 流密度域において SHA に基づく顕

FIG.III-2: EQE-J characteristics under DC and pulse operations.

著な外部量子効率の低下が観測された。しかしながら、パルス駆動の場合、高電流密度域 において SHA による顕著な外部量子効率の低下は観測されず、Singlet-Singlet Annihilation(SSA)に基づく緩やかな外部量子効率の低下が観測された(FIG.III-2)。これらの実 験結果より、素子中に発生するジュール熱をパルス駆動により抑制することができたと考 えられる。

(成果論文)

"Injection and Transport of High Current Density over 1000 A/cm² in Organic Light Emitting Diodes under Pulse Excitation"

Jpn. J. Appl. Phys., 44, 3659-3662 (2005)

H. Nakanotani, T. Oyamada, Y. Kawamura, H. Sasabe, and C. Adachi

(III-3) 単層型 0LED の高電流密度下における Roll-Off 特性の改善

前節において、高電流密度注入下においては、特に、励起子-ポーラロン消滅過程により 外部量子効率の低下が生じ、反転分布の形成が困難であることを示した。そこで本研究で は、素子中に存在するヘテロ界面をなくすことにより励起子消滅を抑制することを目的と して単層型 OLED を作製し、その高電流密度下における電流-電圧-外部量子効率特性につい て検討を行った。

Sapphire/ITO(110nm) 基板上にホール注 入層として MoO₃ を 20nm 蒸着し、 BSB-Cz(4,4-bis[(N-carbazole)styryl] biphenyl)を発光層として 200nm 蒸着した。 次に 30wt%-Cs: BSB-Cz 共蒸着層を電子輸 送層として 20nm 蒸着した。最後にシャド ーマスク(r=100µm)を用いて金属電極とし て Al を 70nm 蒸着し、単層型デバイスを 作製した。電流(J)-電圧(V)-外部量子効率 (η_{ext})は室温、大気雰囲気下で測定した。

FIG.III-3 に(a)電流-電圧(J-V)、(b)電流-外部量子効率(J-η_{ext})特性を示す。素子の最 大電流密度は 15A/cm² であり、最大外部 量子効率は 1.03%であった。ヘテロ界面を 有する素子においては電流密度の増加と

FIG.III-3:J-V-EQE characteristics of BSB-Cz based OLED having no hetero-interface.

ともに η_{ext} の顕著な低下が観測されるものの、単層型 OLED においては $1A/cm^2 \sim 10A/cm^2$ の高い電流密度域においても η_{ext} の低下は観測されず、一定な η_{ext} 挙動が観測された。これ はヘテロ界面が存在しないことによりヘテロ界面で生じるキャリアトラップが減少し、励 起子-Polaron 消滅が抑制されたためである。

IV. Cutoff モードを利用したレーザー発振現象

(IV-1) CW 励起下における ASE 特性と励起吸収

これまでに、ビススチリルベンゼン 誘導体(BSB 誘導体)が非常に優れた ASE 特性を有することを示した。特に、 4,4'-bis[(*N*-carbazole)styryl]biphenyl (BSB-Cz)は、PL 量子効率が φ_{PL}= 99±1%、放射失活速度定数が k_=1× 10%⁻¹と非常に大きな値を有し、パルス レーザー光励起下において、発振閾値 E_{ASE}=0.32±0.1 µJ/cm²の非常に低い励 起光強度での ASE 発振が可能である ことを示した。一方、CW 励起による 固体有機レーザーは未だ実現されて いない。これは、三重項励起状態にお ける励起状態吸収の存在が大きな原 因である。そこで、本研究では、BSB-Cz を発光材料として用いた場合のCW励

FIG.III-1: ASE of BSB-Cz under CW excitation.

起下における発光特性、特に CW 励起下における ASE 発振の可能性について検討を行った。 BSB-Cz をゲスト分子とし、CBP ホスト中に 6wt%の濃度で共蒸着法によりガラス基板上 にドープ膜を 100nm~500nm 成膜し、窒素雰囲気下において、パルス励起光源として窒素 ガスレーザー (337nm)、CW 励起光源として He-Cd レーザー(325nm)を用いて、発光スペク トル及び ASE 特性の測定を行った。Fig.IV-1 に膜厚 500nm 時の CW 励起下及びパルスレー ザー励起下における発光スペクトル及び PL スペクトルを示す。パルスレーザー励起下にお ける ASE 発振波長はλ=462nm (FWHM=6.7nm)であった。さらに、CW 励起下においてもピ ーク波長λ=462nm (FWHM=3.4nm)に非常に先鋭なピークが観測された。発光の偏光特性を 測定した結果、λ=462nm での発光は TE モードでの発光であることが分かった。このピーク 波長は、パルス励起下における ASE 発振波長と同様に BSB-Cz の 0-1 遷移ピークに対応し ていることから、CW 励起による ASE 発振の可能性が示唆された。

(IV-2)カットオフモードに起因する有機膜端面からの狭帯域発光(1) 光学現象と理論解析

有機半導体レーザー実現のためには、高電流密度の実現、励起子失活過程の抑制、光伝 播損失の低減等、克服すべき課題は少なくない。その一方で、近年、カットオフモードに よる端面発光が著しく小さい利得閾値を有することが見出されており、これを有機発光デ バイスにおける新たな光増幅の機構として利用することができると考えられる。そこで、 電流励起有機レーザーダイオードへの展開を目的として、低いASE閾値を有する 4,4'-bis[(*N*-carbazole) styryl]-biphenyl (BSB-Cz)を用い、カットオフモードによる端面発光の 光学現象を追跡した。また、低閾値光増幅の可能性について調べるため、Alq₃膜からの端面 発光と比較を行った。

真空蒸着により、ガラス基 板上に有機層(BSB-Czまたは Alq3)をそれぞれ約40~620nm の範囲で膜厚を変えて成膜し た。それぞれの有機膜を He-Cdレーザー光 (cw, 325nm) 60W/cm²の弱い照射強度で励 起し、破断した端面からの出 射光のスペクトルとその偏光 特性を測定した。また、Slab 型光導波路における位相整合 条件等から、光の出射角を有 機層膜厚と波長の関数として 算出し、測定されたスペクト ルのシミュレーションを行う ことで、端面発光とカットオ フ現象との関係を追跡した。

FIG.IV-3にBSB-Cz膜からの 端面発光スペクトルを示す。

著しく狭帯域化したバンドが見られ(最小半値幅 <4nm)、強い偏光特性(TE/TMモード)を有して いることが分かった。ピーク波長は膜厚変化に伴 いシフトするとともに、位相整合条件式における 次数の変化に従って遷移し、出射角~0°のカット オフ波長計算値とほぼ一致した(Fig.IV-4)。また、 これまでに報告している同様の狭帯域発光もカッ トオフ波長にほぼ一致することが分かった。Alq3 膜においてもカットオフ波長におけるピークは見 られたがそのバンド幅は比較的大きく、これらの 結果はBSB-Cz膜の端面発光が弱い光照射強度下 でも増幅している可能性を示している。また、 BSB-CzとAlq3薄膜それぞれについてGainの測定 を行ったところ、Alg₃においては、Gainが観測さ れなかったものの、BSB-Czにおいては、ストライ プ長0.8mm付近にキンクが観測され、Gainの存在 が示唆された。

FIG.IV-3: Edge emission spectra of BSB-Cz thin films.

FIG.IV-5: Gain maeasurement in BSB-Cz and Alq₃ films.

(IV-3) カットオフモードに起因する有機膜端面からの狭帯域発光(2) 電流励起デバイスへの展開

利得閾値の低いカットオフモードの発光を 利用することで、電流励起による有機レーザ ーダイオードの実現が期待できる。そこで、 BSB-Czを発光材料とした電流励起デバイス 端面からの狭帯域発光について検討した。

リフトオフ法とRFマグネトロンスパッタに よりガラス基板上にライン形状のITO電極を 形成し、その上に各有機膜およびAg上部電極

FIG.IV-6: Laser device and measurement configulation

を真空蒸着で成膜し、単層型有機ELデバイスを作製した。素子構造を下記に示す。 Glass/ITO(30nm)/7wt%-MoO₃:BSB-Cz(10nm)/BSB-Cz(*d*nm)/20wt%-Cs:BSB-Cz(70nm)/Ag

(100nm) (*d*=120, 157, 180nm) ITO電極中央で基板を破

断して有効面積 2mm×0.5mmのライン型 デバイスとし、電流励起 下での端面発光スペクト ルおよびその偏光特性を 測定した。また、発光ス ペクトルの電流密度依存 性についても詳細に調べ た。

Fig.IV-7に電流励起に よる端面発光スペクトル を示す。光励起の場合と 同様に著しく狭帯域化し たバンドが見られ、TE偏 光していることが分かっ た。ピーク波長がBSB-Cz

の0-1遷移に近づくにつれ半値幅は6.5nmまで小さくなった。Fig.IV-8に端面発光強度の電流 密度依存性を示す。表面発光強度は電流密度上昇に伴い比例して増加したが、端面からの 狭帯域発光バンドは単調には比例せず傾きが増加し、強度が相対的に大きくなる傾向が見 られた。Alg3を用いた単層型デバイスでは同様の現象は確認できなかった。BSB-Czの屈折

FIG.IV-7: EL spectra depending on current density. X indicates different BCB-Cz thickness.

(成果論文)

"Spectrally narrow emission at cutoff wavelength from edge of electrically pumped organic

light-emitting diodes"

Jpn. J. Appl. Phys., 46, L826-829 (2007).

Daisuke Yokoyama, Hajime Nakanotani, Yousuke Setoguchi, Masato Moriwake, Dai Ohnishi, Masayuki Yahiro and Chihaya Adachi

V. その他の関連研究成果

本プロジェクトでは、有機レーザーダイオードの実現を目指した研究過程において、新 規有機半導体材料の発見、有用な有機半導体のデバイス物性の評価技術を開発した。以下 に、主な成果について記す。

(V-1) ピリジン誘導体をホスト材料とする高効率有機リン光LED素子

立体障害の大きい置換基を有するピリジン誘導体(3G1-pyridine, 2,2'G1-pyridine, 2,6G1-pyridine)はパラジウム触媒反応に有効な配位子である。一方、有機半導体としての応用に関して分子骨格に含まれるピリジン環

は弱い電子吸引性を有することから電子輸 送性のホスト材料への展開が期待できる。 また多数のフェニル基を有することから、π 電子共役系の形成を阻害する効果(高い三 重項レベルの形成)や優れた熱的安定性も 期待できる。本研究では、これらの特徴を 生かし、OLED や有機レーザー素子のホス ト材料として用いた際の素子特性について 検討を行った。

真空蒸着法を用いて、緑色リン光材料 Ir(ppy)₃を用い ITO(110nm)/TPD(50nm)/3G1 -pyridine:Ir(ppy)₃(20nm)/Bphen(40nm)/MgAg (100nm)/Ag(10nm)の素子及び青色リン光材 料 FIrpic を用い ITO(110 nm)/α-NPD (40nm)

FIG.V-1: Novel pyridine derivatives for OLEDs.

/m-CP(10nm)/3G1-pyridine:FIrpic(20nm)/Bphen (40nm)/MgAg(100nm)/Ag(10nm)の素子を作製 し、EL スペクトル及び J-V-L 特性の測定を行った。

リン光スペクトルの測定結果から、CBPのT₁=2.56eVに対し3G1-pyridineはT₁=2.69eVと見 積もられ、青色リン光材料であるFIrpic(T₁=2.63eV)の三重項励起子を効果的に閉じ込めると 示唆された。また、熱物性を測定した結果、3G1-pyridineはT_g(ガラス転移温度)=95°C, T_m(融 点)=232°C, 2,2'G1-pyridineはT_g=175°C, T_m=364°C, 2,6G1-pyridineはT_g=163°C, T_m=303°Cの高い 耐熱性を示した。OLED素子においてはピリジン誘導体のキャリヤ輸送性を評価するため、 ITO(110nm)/α-NPD(50nm)/pyridine derivatives:Ir(ppy)₃[6wt%](20nm)/BCP(10nm)/Alq₃(30nm)/ MgAg(100nm)/Ag(10nm)の素子を作製しELスペクトルを測定したところIr(ppy)₃及びα-NPD の発光が得られ、3種類のピリジン誘導体は電子輸送性を有していることがわかった。また、 3G1-pyridine:Ir(ppy)₃[10wt%]において η_{ext} =12.5%、3G1-pyridine:FIrpic[10wt%]においても η_{ext} =12.3%の高効率EL発光が得られた。

(V-2)環状シロキサン化合物を用いた高効率有機リン光LED素子

OLED はリン光材料を用いることにより理論的に蛍光材料の4倍の発光効率を得ること が可能であるが、未だ青色リン光材料においては内部量子効率100%が実現されていない。 これは、CBP などのホスト材料を用いた場合、三重項励起子の閉じ込め効果が低いことに 起因する。そこで高効率青色発光素子を実現するためにはワイドエネルギーギャップのホ スト材料を用いることが必要である。本研究ではπ共役系の短い環状シロキサン化合物 (DPSiO3, DPSiO4)について OLED 特性及び光物性を評価した。 DPSiO3 と DPSiO4 を EPA(diethyl ether:isopentane:ethanol = 5:5:2)溶媒 中に 1×10⁻⁵mol/l 濃度で溶解し T=77K でリン光スペクトルを測定した。また、 DSCにより熱物性を測定した。さらに、 真空蒸着法により ITO(110nm)/CuPc (10nm)/α-NPD(30nm)/m-CP(10nm)/EML (20nm)/Bphen(40nm)/MgAg(100nm)/Ag(10nm)の素子を作製し、EL スペクトル 及び J-V-L 特性の測定を行った。

リン光スペクトルの測定結果から、 CBP の T_1 =2.6eV に対し、DPSiO3 と DPSiO4 はいずれも T_1 =3.5eV と見積も られ、青色リン光材料である FIrpic の 三重項励起子を効果的に閉じ込めるこ とがわかった。これらのリン光スペク

FIG.V-2: Novel siloxane derivatives for OLEDs.

トルは、ベンゼンのリン光スペクトルと発光波長域が重なっており、 π 共役系がベンゼン環 に局在化していることが推察される。また、DPSiO3の融点(T_m)は 192°C、DPSiO4の融点(T_m) は 190°Cであったが、ガラス転移温度(T_g)はいずれも観測できなかった。OLED 素子は、 DPSiO4:FIrpic[10wt%]では η_{ext} =8%、DPSiO3:FIrpic [20wt%]では η_{ext} =10%の値が得られた。 また、DPSiO3 を EBL として用いた ITO(110nm)/ α -NPD(30nm)/DPSiO3(10nm)/ DPSiO3: FIrpic (20nm)/Bphen(40nm)/MgAg(100nm)/Ag(10nm)の素子構成では、FIrpic が発光せずに α -NPD が 発光した。また、DPSiO3 を HBL として用いた ITO(110nm) /CuPc(10nm)/ α -NPD(30nm)/m-CP (10nm) / FIrpic[20wt%]:DPSiO3(20nm)/DPSiO3(5nm)/Bphen(40nm)/MgAg(100nm)/Ag(10nm)の 素子構成では、FIrpic の発光が観測された。これらの結果から、このシロキサン化合物は、 電子輸送性が強い性質を有することがわかった。

(成果論文)

"シロキサン化合物を発光層のホスト材料として用いた青色有機 EL デバイスの素子特性" 高分子論文集, 63, 686-689 (2006) 遠藤礼隆, J. Brooks, J. J. Brown, 雀部博之, 安達千波 矢

(V-3) 厚膜有機 EL 素子用 HTL の開発とガラス転移温 度との相関

OLED は、~10V 以下の低駆動電圧で電極からのキ ャリヤー注入を引き起こすために、通常、膜厚が 100nm 程度に制限されている。しかしながら、薄膜デバイス においてはピンホール等に基づく素子の不安定性が存 在するために厚膜デバイスの構築が期待されている。 また、有機レーザー構築の観点からも厚膜デバイスが 必要とされている。しかしながら、厚膜デバイスを形 成すると、駆動電圧が著しく上昇する問題が生じる。 本研究では、多種類のホール輸送材料(HTM)について 検討を行ない、厚膜 HTL を有する有機 EL 素子の構築 について検討した。そして、HTL の駆動電圧の膜厚依 存性と熱物性の相関から、HTM のガラス転移温度が高 い材料ほど膜厚上昇に伴う駆動電圧の上昇(ΔV)を抑制

FIG.V-3: Density of HTM and T_g vs increase of driving voltage (ΔV).

できることが分かった。

デバイス構造は、HTL と Alq₃間の exciplex 等の錯体形成を回避する為に、ITO(110nm)/HTL (50nm or 300nm)/α-NPD(10nm)/Alq₃(50nm)/MgAg(100nm)/Ag(10nm)の素子について検討した。 HTM には、トリフェニルアミン 2 量体、3 量体及び 4 量体を用いた。

EL 外部量子効率は、いずれのデバイスにおいても η_{ext} ~1%を示した。一方、J-V 特性の 膜厚依存性は、HTM の種類に大きく依存することが分かった。HTL の膜厚が 50nm と 300nm を用いた場合の駆動電圧(J=1mA/cm²)の差を ΔV と定義し、HTL のガラス転移温度(Tg)との相 関を見たところ(FIG.V-3)、ガラス転移温度(Tg)と HTL 厚膜には相関があることが示唆され、 Tg の高い HTM ほど駆動電圧の上昇が抑制できることが分かった。一方、 ΔV と HTL の TOF 法によって得られるドリフト移動度(μ_h)との間には強い相関は見られない。このことは、Tg の高い HTM ほど、分子間のパッキング性が高く低電圧でもスムーズな電荷の移動が可能な ことや、空間電荷(space charge)の形成の違いが関与していると考えられる。

(成果論文)

"Material design of hole transport materials capable of thick film formation in organic light emitting diodes"

Appl. Phys. Lett. 90, 183503 (2007).

M. Aonuma, T. Oyamada, T. Miki, H. Sasabe and C. Adachi

(V-4) TSC 測定による有機 EL デバイスの劣化機構の解析

これまで、OLED の耐久性の向上を目指して、材料の安定性、デバイス構造の最適化、素 子封止など様々な側面から検討が行なわれてきた。本研究では(a)ITO/α-NPD(60nm)/ Alq₃(60nm)/LiF/Al の 2 層型デバイスと(b)ITO/α-NPD(20nm)/α-NPD:Alq₃(80nm)/Alq₃(20nm)/ LiF/Al の混合層を発光層に有する混合型デバイスの耐久性の評価を行ない、2 つのデバイス の耐久性の違いを熱刺激電流(TSC)測定によりトラップ形成の観点から明らかにした。

2 種類のデバイスの耐久性測定は一定電流下(J=50mA/cm²)において行ない、t=0,95,302, 500,1000hr ごとに J-V-L 特性を測定した。TSC 測定はリガク(TSC-FETT EL2000)を用い、連 続駆動により劣化させたデバイスを T=90K の低温下で 15.5V(J=1mA/cm²)の電圧を2分間印 加し、トラップに電荷を埋める

加し、トノックに電荷を埋める 操作を行い、その後 10K/min の 割合で温度を上昇させ、トラッ プから電荷を放出させ、その時 に流れる微小電流を測定した。

混合層を有するデバイス(b)は 積層型(a)に比べ輝度の低下が抑 制され、大幅な耐久性の向上が 見られた。FIGV-4には各デバイ スのTSCスペクトルの駆動時間 依存性を示す。積層型(a)におけ る低温側のピーク(T=115±5K)は、 トラップ準位の深さ E_{T1} =約 0.16±0.01eVに対応し、このピー クは駆動時間には大きく依存し ないことがわかった。また、高 温側のピークは駆動時間によっ て除々に増大し、T=170K(E_{T2} = 0.23eV)から 190K(E_{T2} =0.27eV)に シフトしておりトラップ準位が

FIG.V-4: TSC spectra of (a)ITO/ α -NPD(60nm)/ Alq₃(60nm)/ LiF/Al and (b)ITO/ α -NPD(20nm)/ α -NPD:Alq₃ (80nm) /Alq₃ (20nm) / LiF/Al depending on aging time.

連続駆動により増大していることがわかった。一方、混合層を用いたデバイスは2層構造 のデバイスと違い駆動時間によるトラップ準位の変化は観測されず、デバイスの連続駆動 に伴い新たなトラップ準位の形成は生じないことがわかった。

(成果論文)

"Analysis of carrier traps in continuously operated 4,4'-bis[N-(1-naphthyl)-N-phenyl-amino]

biphenyl (α -NPD)/tris (8-hydoroxyquinoline)aluminum (Alq₃) based organic light emitting diodes using thermally stimulated current measurement"

Jpn. J. Appl. Phys. Part II, 46, L636 (2007).

Makoto Nakahara, Masahiro Minagawa, Takahito Oyamada, Toyoyasu Tadokoro, Hiroyuki Sasabe and Chihaya Adachi

(V-5) Thermally stimulated current 法による C60/絶縁層界面の電子トラップ準位の測定

OFET は半導体層への酸素や水の吸着、半導体/絶縁層界面の状態によって半導体層中のキャリアトラップ密度が変化し、このキャリアトラップが素子性能(FET 移動度)に大きな影響を与えると考えられているが、直接に半導体層中のトラップを測定した報告例はない。詳細に半導体層中のトラップを調査することは、今後、大気中安定な高性能有機デバイスを作製するために重要である。本研究では、FET 中の半導体/絶縁層界面近傍のキャリアトラップに関する知見を得るために、TSC 法を用いて C60 を半導体層とした FET の電子トラップ準位の測定を行った。

素子構造 Heavily n-doped silicon gate/silicon dioxide insulator (300 nm)/Au source-drain alastrodas (50 nm)/C60 semiconductor (50 nm)

electrodes (50 nm)/C60 semiconductor (50 nm) のボトムコンタクト・ボトムゲート型のC60 FETを 作製した。金の櫛形電極は密着露光法を用い て作製し、チャンネル長 25 μ m, チャンネル幅 76mm とした。C60 半導体層は蒸着速度 0.03nm/s で真空蒸着した。作製した C60 FET は大気を経由して TSC チャンバー内に設置し、 He 雰囲気下において 80K まで冷却した。80K において Source-drain voltage=100V と Gate voltage=100V を印加し、C60/絶縁層界面近傍 の電子トラップにキャリアを蓄積させた。 Source-drain voltage と Gate voltage を落とした 後、Collecting bias として Source-drain voltage=1V を印加しながら昇温速度 0.16K/s で室温までサンプルを加熱し、この際にトラッ

FIG.V-5: TSC signals of C60 films with various environmental conditions.

プから放出される電子電流をフェムトアンペア電流計で測定した。この1番目のTSC スペクトル測定後,サンプルを100℃で1時間加熱することでC60薄膜に吸着した酸素や水を放出させ、上記と同様な方法で2番目のTSC スペクトルを測定した.再びサンプルを大気に暴露し、上記と同様な方法で3番目のTSC スペクトルを測定した。

C60 FET の TSC スペクトルを FIG.V-5 に示す。TSC スペクトルには 2 種類の電子トラップに起因 するピークが観測された(低温側のピークを P1,高温側のピークを P2 とする)。式 $E_t = k_B T_s \ln(T_s^4/\beta)$ (E_t :トラップ深さ, k_B :ボルツマン定数, T_s :サンプル温度, β :昇温速度)³を用いてトラップ深さを算出す ると、P1 の電子トラップの深さは~0.23eV、P2 の電子トラップの深さは~0.42eV であった。一方、C60 FET 特性は、一度大気を経由することで C60 薄膜中に水や酸素が吸着し FET 特性は全く得られ なかったが、100°Cで 1 時間加熱することで C60 薄膜から酸素や水が放出され FET 特性(飽和領 域の電子移動度 $\mu = 1.6 \times 10^4 \text{ cm}^2/\text{Vs}$)が観測できるようになった。再び大気に暴露すると水や酸素が 吸着し FET 特性が消失した。また、TSC スペクトルにおいて、低温側のピーク(P1)が熱処理によっ て減少し、大気暴露によって逆に増加しているから、P1 の電子トラップは C60 薄膜に吸着した水や 酸素に帰属すると結論付けることができる。高温側のピーク(P2)は C60 薄膜に含まれる潜在的な電 子トラップと考えられる。このように TSC 法は有機薄膜中におけるトラップ濃度を計測する有用な手 法であることが分かった。

(成果論文)

"Estimation of electron traps in carbon-60 field-effect transistors by a thermally stimulated current technique"

Appl. Phys. Lett., 91, 103505 (2007).

Toshinori Matsushima, Masayuki Yahiro, and Chihaya Adachi

(2)研究成果の今後期待される効果

本研究では、有機半導体レーザーの実現を目指して、材料合成、薄膜デバイス設計、光電子物性の解析について取り組んできた。

有機レーザー活性材料については、ビススチリルベンゼン(BSB)系材料を徹底的に検討することにより、これまで報告されている材料の中で最も低い ASE 閾値(E_{th}~0.1µJ/cm²)を実現した。 固体薄膜において発光量子収率が~100%に達したことより、蛍光材料としては究極の値を実現す ることができた。これらの新規材料は、優れた有機半導体特性を兼ね備えていることより、今後、有 機半導体レーザーの活性層として中心的に使われていくと期待される。また、連続耐久性にも優 れた特性を有することから、OLED 等への電子デバイスへの応用のみならず、色素レーザーや二 光子吸収材料としての用途も期待される。

有機薄膜への高電流密度の注入に関しては、CuPc薄膜へは、最大 J>6MA/cm²を超える電流注 入に成功した。この値も、これまでの報告例の中で、世界最高の電流密度である。有機薄膜は、そ のエネルギー構造から、一般には、絶縁体であると考えられてきたが、OPC や OLED の実現によっ てnA/cm²からmA/cm²の半導体的な電流領域が利用可能なことが分かり、さらに本研究によって、 MA/cm²の電流領域を有機半導体は利用可能であることを明らかにした。また、本研究では、 発光デバイスなどに重要な有機積層構造においても1KA/cm²を超える電流注入を実現した。 これらの研究成果は、有機半導体レーザーのみならず、今後、有機超伝導体などの大電流 密度を用いる新規なデバイスの構築へ繋がると期待される。

また、高電流密度下の励起子 annihilationの解析において、電流注入有機半導体デバイス中で は、100mA/cm²を超える電流領域から singlet-singlet, singlet-polaron annihilation、さらには、熱に よる励起子の解離が活発に生じていることが示唆された。これらの annihilationを回避するためには、 パルス駆動や微小デバイスによる放熱の確保、有機一有機ヘテロ界面の回避が有効であることが わかった。今後、本研究で可能となった FET 構造による電流励起構造を用いれば、ヘテロ界面を 回避することが可能であり、さらに、結晶性の高い有機凝集状態を用いることによって移動度を大 幅に向上させ、励起子失活を抑制することが期待できる。また、polaron 吸収の時間分解スペクトル などの分光計測によって、より詳細な励起子相互作用の解析が進むと期待される。

本研究では、BSB-Cz を含有する有機多層薄膜構造において cutoff モードを用いた光増幅 現象を見出した。Cutoff モードでは、屈折率の異なる薄膜界面に光を閉じ込めることから、 極低閾値での光増幅が可能と考えられる。特に本研究で開発した BSB 系レーザー活性材料 をレーザー活性層に用いることによって、光増幅現象を確認した。さらに、電流励起可能 なデバイス構造を構築し、電流励起下においても光増幅現象を確認することができた。今 後、光増幅メカニズムの解明を進めると共に、FET 構造など新たなデバイス構造において も cutoff 現象によるレーザー発振の可能性が期待される。

4 研究参加者

①安達グループ(「有機半導体レーザーの構築とデバイス物理の解明」の研究)

氏名	所 属	役 職	研究項目	参加時		
安達千波矢	九州大学未来 化学創造セン ター	教授	研究総括	平成	14 年	11月~
八尋正幸	九州大学未来 化学創造セン ター	助教	有機レーザーデバイス 構造の設計	平成	18 年	4月~
横山 大輔	九州大学未来 化学創造セン ター	CREST 研究員	新光増幅機構の開発と レーザー素子化	平成	19 年	2月~
洪曉雯	九州大学未来 化学創造セン ター	CREST 研究員	材料合成と光物性解明	平成	19 年	3月~
原田 絵理子	九州大学未来 化学創造セン ター	チーム事 務員	秘書業務	平成	18 年	4月~
中野谷一	九州大学工学 府物質創造工 学専攻	研究補助 員	有機半導体レーザーの 構築に関する研究	平成	16 年	4月~
遠藤 礼隆	九州大学工学 府物質創造工 学専攻	研究補助 員	励起子失活過程の解明	平成	16 年	4月~
松島 敏則	九州大学未来 化学創造セン ター	CREST 研究員	高電流密度の実現とデ バイス化	平成 平成	17 年 19 年	4月~ 3月
斉藤 正美	千歳科学技術 大学	チーム事 務員	秘書業務	平成 平成	15 年 18 年	4月~ 3月
河村 祐一郎	千歳科学技術 大学	CREST 研究員	有機レーザー用材料の 分子設計と素子設計	平成 平成	15 年 17 年	4月~ 4月
小山田崇人	千歳科学技術 大学	研究補助 員	有機半導体レーザーの 構築に関する研究	平成 平成	14 年 16 年	11月~ 3月
合志憲一	千歳科学技術 大学	研究補助 員	有機半導体デバイスの 機構解析	平成 平成	14 年 17 年	11月~ 3月

前田	千春	サエスゲッタ	ゲッター	電子注入電極の検討	平成	14 年	11月~
		ーズジャパン	アプリケ		平成	15 年	3月
		(株)	ーション				
			開発室				
			室長				
青島	正一	(有)ALSテク	代表取締	有機半導体レーザー形	平成	14 年	11月~
		ノロジー	役	成のための製膜装置の	平成	15 年	3月
				設計(スパッタ装置の			
				開発)			

5 招聘した研究者等

なし

6 成果発表等

(1) 原著論文発表 (国内誌 7 件、国際誌 53 件)

(国内誌)

- 佐藤喜郎, 合志憲一, 雀部博之, Julie J. Brown, 斉藤正美, 安達千波矢 2 つのリン光性ドーパントを含有する白色リン光デバイスの発光機構 電気学会論文誌A, Vol.124, No.5, pp.414-420 (2004)
- 小山田崇人, 雀部博之, 安達千波矢 フォトリソグラフィー法によるMgAu合金電極の形成と有機LED・有機FETへの適用 電気学会論文誌C, Vol.124, No.6, pp.1219-1223 (2004)
- 3. 安藤暢宏,河村祐一郎, Julie. J. Brown, 雀部博之,安達千波矢 複数のリン光発光層を含有する白色発光デバイス 電気学会論文誌A, Vol.124, No.11, pp.1053-1058 (2004)
- 4. 小山田崇人,安達千波矢 低電圧駆動を目指した低分子有機EL素子 日本画像学会誌,45,pp.59-65 (2006)
- 5. 古酒慎也,丸山純夫,雀部博之,安達千波矢 可溶性トリス(8-キノリノレート)アルミニウム含有デンドリマーの発光特性 高分子論文集, Vol.63, No.10, pp.675-680 (2006)
- 6. 遠藤礼隆, J. Brooks, J. J. Brown, 雀部博之, 安達千波矢 シロキサン化合物を発光層のホスト材料として用いた青色有機ELデバイスの素子特性 高分子論文集, Vol.63, No.10, pp.686-690 (2006)
- 7 安達千波矢,小山田崇人,松島敏則 化学ドーピングによる有機EL素子の低駆動電圧化 Lowering the Driving Voltage of Organic Light Emitting Diodes by Chemical Doping 表面科学, Vol. 28, No. 5, pp.236-241 (2007)

(国際誌)

- T. Oyamada, C. Maeda, H. Sasabe and C. Adachi Efficient Electron Injection Characteristics of Tetra-2-pyridinylpyrazine (TPP) in Organic Light Emitting Diodes Chem. Lett., Vol.32, No.4, pp.388-389 (2003)
- T. Oyamada, H. Tanaka, K. Matsushige, H. Sasabe and C. Adachi Switching effect in Cu:TCNQ charge transfer-complex thin films by vacuum co-deposition Appl. Phys. Lett., Vol.83, No.6, pp.1252-1254 (2003)
- W. Yokoyama, H. Sasabe and C. Adachi Carrier Injection and Transport of Steady-State High Current Density Exceeding 1000A/cm² in Organic Thin Films Jpn. J. Appl. Phys., Vol.42, pp.L1353-1355 (2003)
- T. Oyamada, C. Maeda, H. Sasabe and C. Adachi Efficient Electron Injection Mechanism in Organic Light-Emitting Diodes Using an Ultra Thin Layer of Low-Work-Function Metals Jpn. J. Appl. Phys., Vol.42, pp. L1535-1538 (2003)
- H. Yamamoto, T. Oyamada, H. Sasabe, and C. Adachi Amplified spontaneous emission under optical pumping from an organic semiconductor laser structure equipped with transparent carrier injection electrodes Appl. Phys. Lett., Vol.84, No.8, pp.1401-1403 (2004)
- H. Inomata, K. Goushi, T. Masuko, T. Konno, T. Imai, H. Sasabe, J. J. Brown and C. Adachi High-Efficiency Organic Electrophosphorescent Diodes Using 1, 3, 5-Triazine Electron Transport Materials Chem. Mat., Vol.16, No.7, pp.1285-1291 (2004)
- X. F. Ren, B. D. Alleyne, P. I. Djurovich, C. Adachi, I. Tsyba, R. Bau and M. E. Thompson Organometallic Complexes as Hole-Transporting Materials in Organic Light-Emitting Diodes Inorg. Chem., Vol.43, No.5, pp.1697-1707 (2004)
- O. Karthaus, C. Adachi, S. Kurimura, and T. Oyamada Electroluminescence from self-organized "microdomes" Appl. Phys. Lett., Vol.84, No.23, pp.4696-4698 (2004)
- K. Goushi, R. Kwong, J. J. Brown, H. Sasabe and C. Adachi Triplet exciton confinement and unconfinement by adjacent hole-transport layers J. Appl. Phys., Vol.95, No.12, pp.7798-7802 (2004)
- K. Goushi, Y. Kawamura, H. Sasabe, and C. Adachi Unusual Phosphorescence Characteristics of Ir(ppy)₃ in a Solid Matrix at Low Temperatures Jpn. J. Appl. Phys., Vol.43, No.7A, pp. L937-939 (2004)
- Y. Kawamura, H. Yamamoto, K. Goushi, H. Sasabe, C. Adachi, and H. Yoshizaki Ultraviolet amplified spontaneous emission from thin films of 4,4'-bis(9-carbazolyl)-2,2'-biphenyl and the derivatives Appl. Phys. Lett., Vol.84, No.15, pp.2724-2726 (2004)
- 12. M. Ohkita, C. Adachi, M. Kawano, and T. Suzuki Synthesis and characterization of hexakis(4-pyridylethynyl)benzene and hexakis(5-pyrimidyletynyl) benzene

Heterocycles, Vol.63, No.7, pp.1537-1540 (2004)

- T. Oyamada, Y. Kawamura, T. Koyama, H. Sasabe and C. Adachi Formation of Europium Chelate Complexes by Vacuum Co-Deposition and Their Application in Organic Light-Emitting Diodes Adv. Mat., Vol.16, No.13, pp.1082-1086 (2004)
- T. Oyamada, H. Yoshizaki, H. Sasabe, and C. Adachi Efficient Electron Injection Characteristics of Triazine Derivatives for Transparent OLEDs (TOLEDs) Chem. Lett., Vol.33, No.8, pp.1034-1035 (2004)
- K. Hirata, T. Oyamada, T. Koyama, H. Sasabe, T. Imai, and C. Adachi Electroluminescence as a probe for elucidating electrical conductivity in a deoxyribonucleic acid-cetyltrimethylammonium lipid complex layer Appl. Phys. Lett., Vol.85, No.9, pp.1627-1629 (2004)
- Y. Kawamura, H. Sasabe, and C. Adachi Simple Accurate System for Measuring Absolute Photoluminescence Quantum Efficiency in Organic Solid-State Thin Films Jpn. J. Appl. Phys., Vol.43, No.11A, pp.7729-7730 (2004)
- M. Yoshida, T. Tsuchida, T. Kurata, M. Ikeda, H. Sasabe, and C. Adachi High-Efficiency Carrier Injection Characteristics of Dixanthene Derivatives in Organic Light Emitting Diodes Jpn. J. Appl. Phys., Vol.44, No.1A, pp.410-411 (2005)
- T. Oyamada, H. Sasabe, C. Adachi, S. Murase, T. Tominaga, and C. Maeda Extremely low-voltage driving of organic light-emitting diodes with a Cs-doped phenyldipyrenylphosphine oxide layer as an electron-injection layer Appl. Phys. Lett., Vol.86, No.3, pp.033503-1 – 033503-3 (2005)
- H. Yamamoto, H. Kasajima, W. Yokoyama, H. Sasabe, and C. Adachi Extremely-high-density carrier injection and transport over 12000A/cm2 into organic thin films Appl. Phys. Lett., Vol.86, No.8, pp.083502-1 – 083502-3 (2005)
- T. Aimono, Y. Kawamura, K. Goushi, H. Yamamoto, H. Sasabe, and C. Adachi 100% fluorescence efficiency of 4,4'-bis[(N-carbazole)styryl]biphenyl in a solid film and the very low amplified spontaneous emission threshold Appl. Phys. Lett., Vol.86, pp.071110-1 – 071110-3 (2005)
- T. Oyamada, S. Okuyama, N. Shimoji, K. Matsushige, H. Sasabe, and C. Adachi Electroluminsecence of 2,4-bis(4-(2'-thiophene-yl)phenyl)thiophene in organic light-emitting field-effect transistors Appl. Phys. Lett., Vol.86, No.9, pp.093505-1 – 093505-3 (2005)
- Y. Kawamura, K. Goushi, J. Brooks, J. J. Brown, H. Sasabe, and C. Adachi 100% phosphorescence quantum efficiency of Ir(III) complexes in organic semiconductor films Appl. Phys. Lett., Vol.86, No.7, pp.071104-1 – 071104-3 (2005)
- H. Nakanotani, H. Sasabe, and C. Adachi Singlet-singlet and singlet-heat annihilations in fluorescence-based organic light-emitting diodes under steady-state high current density Appl. Phys. Lett., Vol.86, No.21, pp.213506-1 – 213506-3 (2005)

- H. Nakanotani, T. Oyamada, Y. Kawamura, H. Sasabe, and C. Adachi Injection and Transport of High Current Density over 1000A/cm² in Organic Light-Emitting Diodes under Pulse Excitation Jpn. J. Appl. Phys., Vol.44, No.6A, pp.3659-3662 (2005)
- K. Goushi, H. Sasabe, and C. Adachi Phosphorescence Decay Mechanism of Ir(ppy)₃ in a Solid Matrix J. Photopolymer Sci. & Tech., Vol.18, No.1, pp.47-50 (2005)
- Y. Kawamura, J. Brooks, J. J. Brown, H. Sasabe and C. Adachi Intermolecular Interaction and a Concentration-Quenching Mecanism of Phosphorescent Ir(III) Complexes in a Solid Film Phys. Rev. Lett., Vol.96, No.1, pp.017404-1 – 017404-4 (2006)
- T. Matsushima, H. Sasabe and C. Adachi Carrier injection and transport characteristics of copper phthalocyanine thin films under low to extremely high current densities Appl. Phys. Lett., Vol.88, pp.033508-1 – 033508-3 (2006)
- H. Yamamoto, T. Oyamada, W. Hale, S. Aoshima, H. Sasabe and C. Adachi Low-Damage Indium Tin Oxide Formation on Organic Layers Using Unique Cylindrical Sputtering Module and Application in Transparent Organic Light-Emitting Diodes Jpn. J. Appl. Phys., Vol.45, No.7, pp. L213-216 (2006)
- O. Karthaus, C. Adachi, S. Arakaki, A. Endo and T. Wada Preparation of Micropatterned Organic Light Emitting Diodes by Self-Organization Molecular Crystals and Liquid Crystals, Vol.444, pp.87-94 (2006)
- Kenichi Goushi, Jason Brooks, Julie. J. Brown, Hiroyuki Sasabe, and Chihaya Adachi Spin-relaxation Process of Excited Triplet States of Ir(ppy)₃
 J. Photopolymer Sci. & Tech., Vol.19, No.2, pp.181-186 (2006)
- J. A. Mikroyannidis, L. Fenenko, and C. Adachi Synthesis and Photophysical Characteristics of 2,7-Fluorenevinylene-Based Trimers and Their Electroluminescence J. Phys. Chem. B, Vol.110, pp.20317-20326 (2006)
- Atsushi Takahashi, Ayataka Endo and Chihaya Adachi Novel Electron-Transporting Carbazolylphenylquinolines for Phosphorescent Organic Light-Emitting Diodes Jpn. J. Appl. Phys., Vol.45, No.12, pp.9228-9230 (2006)
- 33. John A. Mikroyannidis, Helen A. Moshopoulou, John A. Anastasopoulos, Minas M. Stylianakis, Larysa Fenenko, and Chihaya Adachi Novel Blue-Greenish Electroluminescent Poly(Fluorenevinylene-alt-dibenzothiophenevinylene)s and Their Model Compounds J. Poly. Sci., A: Poly. Chem. Vol.44, pp.6790-6800 (2006)
- Takahito Oyamada, Guang Shao, Hiroyuki Uchiuzou, Hajime Nakanotani, Akihiro Orita, Junzo Otera, Masayuki Yahiro, and Chihaya Adachi Optical and Electrical Properties of Bis(4-(phenylethynyl)phenyl)ethynes and Their Application to Organic Field-Effect Transistors Jpn. J. Appl. Phys., Vol.45, No.50, pp. L1331-1333 (2006)

- 35. T. Matsushima and C. Adachi Extremely low voltage organic light-emitting diodes with p-doped alpha-sexithiophene hole transport and n-doped phenyldipyrenylphosphine oxide electron transport layers Appl. Phys. Lett., Vol.89, pp.253506-1 – 253506-3 (2006)
- Toshinori Matsushima, Kenichi Goushi, and Chihaya Adachi Charge-carrier injection characteristics at organic/organic heterojunction interfaces in organic light-emitting diodes Chem. Phys. Lett., Vol.435, pp.327-330 (2007)
- L. Fenenko and C. Adachi Influence of heat treatment on indium-tin-oxide anodes and copper phthalocyanine hole injection layers in organic light-emitting diodes Thin Solid Films, Vol.515, pp.4812-4818 (2007)
- Yuhki Terao, Hiroyuki Sasabe and Chihaya Adachi Correlation of hole mobility, exciton diffusion length, and solar cell characteristics in phthalocyanine/fullerene organic solar cells Appl. Phys. Lett. Vol.90, pp.103515-1 – 103515-3 (2007)
- Hiroshi Kanno, Kaori Ishikawa, Yoshitakta Nishio, Ayataka Endo, Chihaya Adachi, Kenichi Shibata Highly efficient and stable red phosphorescent organic light-emitting device using bis[2-(2-benzothiazoyl)phenolato]zinc(II) as host material Appl. Phys. Lett. Vol.90, pp.123509-1 – 123509-3 (2007)
- M. Aonuma, T. Oyamada, T. Miki, H. Sasabe and C. Adachi Material design of hole transport materials capable of thick-film formation in organic light emitting diodes Appl. Phys. Lett. Vol.90, pp.183503-1 – 183503-3 (2007)
- T. Oyamada, C.-H. Chang, T.-C. Chao, F.-C. Fang, C.-C. Wu, K.-T. Wong, H. Sasabe and C. Adachi Optical Properties of Oligo(9,9-diaryfluorene) Derivatives in Thin Films and Their Application for Organic Light-Emitting Field-Effect Transistors J. Phys. Chem. C Vol.111, pp.108-115 (2007)
- Larysa Fenenko, Guang Shao, Akihito Orita, Masayuki Yahiro, Junzo Otera, Sergei Svechnikov, and Chihaya Adachi Electrical properties of 1,4-bis(4-(phenylethynyl)phenylethynyl)benzene and its application for organic light emitting diodes Chem. Comm., pp.2278-2280 (2007)
- Satria Zulkarnaen Bisri, Tetsuo Takahashi, Taishi Takenobu, Masayuki Yahiro, Chihaya Adachi and Yoshihiro Iwasa Ambipolar Field-Effect Transistor of High Photoluminescent Material Tetraphenylpyrene (TPPy) Single Crystal Jpn. J. Appl. Phys., Vol. 46, No.24, pp. L596-598 (2007)
- H. Nakanotani, C. Adachi, S. Watanabe and R. Katoh Spectrally narrow emission from organic films under continuous-wave excitation Appl. Phys. Lett., Vol.90, pp.231109-1 – 231109-3 (2007)
- 45. Makoto Nakahara, Masahiro Minagawa, Takahito Oyamada, Toyoyasu Tadokoro, Hiroyuki Sasabe and Chihaya Adachi

Analysis of Carrier Traps in Continuously Operated 4,4'-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl /tris (8-hydoroxyquinoline)aluminum-Based Organic Light-Emitting Diodes by Thermally Stimulated Current Measurement Jpn. J. Appl. Phys., Vol.46, No.25, pp.L636-639 (2007)

- 46. Hajime Nakanotani, Masayuki Yahiro, Koki Yano and Chihaya Adachi Ambipolar field-effect transistor based on organic-inorganic hybrid structure Appl. Phys. Lett., Vol.90, pp.262104-1 – 262104-3 (2007)
- Kyung Soo Son, Masayuki Yahiro, Toshiro Imai, Hiroki Yoshizaki and Chihaya Adachi Blue Organic Electrophosphorescence Diodes using Diarylamino-substituted Heterocyclic Compounds as Host Material J. Photopolymer Sci. & Tech., Vol.20, No.1, pp.47-51 (2007)
- Toshinori Matsushima and Chihaya Adachi High-current Injection and Transport on Order of kA/ cm² in Organic Light-emitting Diodes Having Mixed Organic/ Organic Heterojunction Interfaces Jpn. J. Appl. Phys., Vol.46, No.35, pp.L861-863 (2007)
- Toshinori Matsushima, Masayuki Yahiro, and Chihaya Adachi Estimation of electron traps in carbon-60 field-effect transistors by a thermally stimulated current technique Appl. Phys. Lett., Vol.91, pp.103505-1 – 103505-3 (2007)
- Daisuke Yokoyama, Hajime Nakanotani, Yousuke Setoguchi, Masato Moriwake, Dai Ohnishi, Masayuki Yahiro and Chihaya Adachi Spectrally Narrow Emission at Cutoff Wavelength from Edge of Electrically Pumped Organic Light-Emitting Diodes Jpn. J. Appl. Phys., Vol.46, No.35, pp. L826-829 (2007)
- 51 H. Nakanotani, N. Matsumoto, H. Uchiuzou, M. Nishiyama, M. Yahiro and C. Adachi Very Low Amplified Spontaneous Emission Threshold and Electroluminescence Characteristics of 1,1'-diphenyl Substituted Fluorene Derivatives Optical Materials, Vol.30, pp.630-636 (2007)
- H. Nakanotani, S. Akiyama, D. Ohnishi, M. Moriwake, M. Yahiro, T. Yoshihara, S. Tobita and C. Adachi Extremely Low-Threshold Amplified Spontaneous Emission of 9,9'-Spirobifluorene Derivatives and Electroluminescence from Field-Effect Transistor Structure Adv. Funct. Mater., Vol.17, pp.2328-2335 (2007)
- 53. T. Matsushima and C. Adachi Observation of Extremely High Current Densities on Order of MA/cm² in Copper Phthalocyanine Thin-Film Devices with Submicron Active Areas Jpn. J. Appl. Phys., Vol.46, No.47, pp.L1179-L1181 (2007)

(2) その他の著作物 (総説、書籍など)

 合志憲一、安達千波矢 ゲストーホスト系におけるリン光材料の発光メカニズム 電気学会・電子材料研究会、電子材料研究会資料(EFM-03-4), p.15 (2003)

- 2. 河村祐一郎,安達千波矢 有機リン光 EL デバイス 月刊ディスプレイ,9,26 (2003)
- 河村祐一郎,安達千波矢
 高効率有機燐光発光ダイオードの材料開発とデバイス設計
 電子材料, 12,35 (2003)
- 4. 安達千波矢 有機 EL 黎明期の頃
 第1回応用物理学会・有機分子バイオエレクトロニクス分科会論文賞の background Molecular Electronics and Bioelectronics, 14, 205 (2003)
- 5. 安達千波矢、山本英利、横山亘 有機エレクトロニクス・フォトニクス材料とデバイス-21 世紀情報産業の新たな展開 をめざして 第3章"有機半導体レーザー", ㈱シーエムシー 監修:長村利彦, p.309-327 (2003)
- 6. 安達千波矢、河村祐一郎、合志憲一 有機半導体の応用展開
 第3章"有機 LED",(㈱シーエムシー 監修:谷口彬雄, p.51-64 (2003)
- 7. 安達千波矢
 有機トランジスタの動作性向上技術
 第5章 有機デバイスの開発状況とその将来性 第1節 有機リン光発光素子
 技術情報協会 (2003)
- 8. C. Adachi and T. Tsutsui Organic Light Emitting Devices Chapter 3 American Institute of Physics (AIP Press) (2003)
- 9. 合志憲一,安達千波矢 有機 EL ディスプレイにおける高輝度・高効率・長寿命化技術 第4節[1] 低分子系燐光材料及び高効率燐光発光素子 技術情報協会 (2003)
- 安達千波矢 有機 EL ディスプレイの歴史と技術動向 イーエクスプレス"有機 EL ディスプレイ産業の全貌 2004",第1編 第1章 p.16-19 (2004)
- 河村祐一郎、合志憲一、高橋教悦、安達千波矢 有機金属リン光材料のPL及びEL過程 Molecular Electronics and Bioelectronics, Vol.15, 37 (2004)
- 安達千波矢 電流励起を目指した有機半導体レーザーの材料デバイス設計 Molecular Electronics and Bioelectronics, Vol.15, 99 (2004)

- 合志憲一、河村祐一郎、安達千波矢 高効率有機リン光ダイオードの材料開発動向 月間ディスプレイ, 10(9), 1 (2004)
- 安達千波矢 有機EL黎明期の頃 その1 SEMI NEWS, 20, 14 (2004)
- 15. 安達千波矢 有機EL黎明期の頃 その2 SEMI NEWS, 20, 18 (2004)
- 16. 安達千波矢、小山田崇人、中島嘉之 有機電子デバイス研究者のための有機薄膜仕事関数データ集 ㈱シーエムシー (2004)
- 河村祐一郎、合志憲一、安達千波矢 有機EL材料技術 第2章(1) りん光EL素子の原理と発光機構 ㈱シーエムシー (2004)
- 時任静士、安達千波矢、村田英幸 有機ELディスプレー オーム社 (2004)
- 安達千波矢 応用の可能性膨らむ有機光半導体 日経ナノビジネス No.36, pp12-16 (2006)
- 小山田崇人,安達千波矢 NIKKEI FPD2006 <基礎技術編> ~ パネル別に最新技術を解説 ~ "FPD International 2005"から Part4 有機EL:デバイスの基礎から新展開まで 日経BP (2006)
- 21. 安達千波矢,中野谷一 進化する有機半導体-有機エレクトロニクス創成に向けた光・電子機能デバイスへの 応用最前線-応用編第2章 有機半導体レーザーの材料・デバイス設計 エヌ・ティー・エス (2006)
- 安達千波矢 発光型有機 FET Molecular Electronics & Bioelectronics, Vol.17, 35-38 (2006)
- 松島敏則,安達千波矢 有機薄膜への高電流密度の注入と低電流密度から高電流密度域におけるキャリア輸送特性 Molecular Electronics and Bioelectronics, Vol.17, 1 (2006)
- 24. 安達千波矢,松島敏則,中野谷一 有機発光ダイオードから有機レーザーへの応用展開

光学, 11, 556 (2006)

- 25. 安達千波矢,河村祐一郎,合志憲一,遠藤礼隆 強リン光性分子薄膜の開発と発光デバイスへの応用 応用物理,75,1465-1470 (2006)
- K. S. Son, T. Mishina, S. Yamamoto, J. Nakahara, C. Adachi, and Y. Kawamura Topological change of 4, 4'-bis[9-dicarbazolyl]-2,2'-biphenyl (CBP) by intermolecular rearrangement Proceeding of the international symposium on TOP, World Scientific Publishing, pp.124-128 (2006)
- 27. 安達千波矢,小山田崇人,松島敏則 キャリア注入・輸送層ドーピングによる有機 LED の特性向上 Molecular Electronics and Bioelectronics, Vol.18, No.1, pp.25-30 (2007)
- 28. 安達千波矢 柔構造有機エレクトロニクス 5章, 5.2 発光デバイス オーム社 (2007)
- 29. 安達千波矢 電子デバイスの世界を広げる 有機半導体材料の可能性 化学, Vol.62, No.12, pp.45-49 (2007)

(3)学会発表(国際学会発表及び主要な国内学会発表)

① 招待講演 (国内会議 18件、国際会議 18件)

(国内)

- 安達千波矢 Recent progress on OLED 理研ナノサイエンス&ナノテクノロジーセミナー,理化学研究所, 2005 年 4 月 18 日
- 安達千波矢 有機 EL 素子の高性能化への挑戦 近畿化学協会・機能性色素部会第 61 回例会,大阪科学技術センター,2005 年 4 月 20 日
- 安達千波矢 有機半導体発光デバイスの到達点と新展開 第 22 回 フォトポリマーコンファレンス(CPST-22), 千葉大学, 2005 年 6 月 21~24 日
- 安達千波矢 ディスプレイの最新動向 InterOpto '05, 光技術動向セミナー,幕張メッセ, 2005 年 7 月 15 日
- 5. 安達千波矢 有機レーザーデバイス実現を目指した材料・デバイス設計

京大 COE シンポジウム(有機薄膜太陽電池の最前線), 京大会館, 2005 年7月 15~16日

- 6. 安達千波矢 有機発光デバイスの基礎から応用デバイスへの新展開
 2005 年国際固体素子・材料コンファレンスショートコース,神戸国際会議場,2005 年 9 月 12 日
- 安達千波矢 有機発光デバイスの新展開-有機 LED、発光性トランジスター、有機レーザー 第 54 回高分子討論会,山形大学,2005 年 9 月 20~22 日
- 安達千波矢 りん光有機 EL 素子の現状 有機エレクトロニクスシンポジウム in 米沢, グランドホクヨウ米沢, 2005 年 9 月 22 日
- 9. 安達千波矢 有機レーザーダイオードを目指した材料・デバイス開発 大阪府立産業技術総合研究所セミナー「有機半導体デバイス開発の最前線」,2006 年 2月3日
- 10. 安達千波矢,遠藤礼隆 有機リン光素子のデバイス物理-電荷注入、再結合から失過程まで-日本化学会第86春季年会招待講演,日本大学,2006年3月28日
- 11. 安達千波矢、中野谷一、松島敏則、八尋正幸 有機半導体レーザー実現を目指した材料・デバイス設計 レーザー学会学術講演会第 27 回年次大会、宮崎市フェニックスシーガイヤリゾート、 2007 年1月17~18 日
- 12. 安達千波矢
 有機トランジスターにおける高移動化と両極性化の検討
 第 45 回材料自由討論会, 唐津シーサイドホテル, 2007 年 6 月 10~12 日
- 13. 安達千波矢 次世代有機光エレクトロニクスの展開-アモルファスから集積分子集合体への期待 第53回高分子夏季大学,洞爺湖万世閣,2007年7月17~19日
- 14 安達千波矢
 有機レーザーダイオードの実現を目指した材料・デバイス設計
 第2回 SORST 横断デバイス物性研究会,理化学研究所 物質科学研究棟 和田超分子
 科学研究室,2007年7月25日
- 15 安達千波矢 有機発光デバイスの高性能化を目指した光物理過程の解明-有機レーザーダイオード 実現へ向けて-光化学討論会,信州大学松本キャンパス,2007年9月28日
- 16. 安達千波矢 有機発光性薄膜デバイスの新展開

薄膜材料デバイス研究会第4回研究集会,龍谷大学,2007年11月2日

- 17. 安達千波矢
 有機 EL の最新技術動向
 光機能材料研究会第17回講演会,東京大学先端科学技術研究センター,2007年11月6日
- 18. 安達千波矢 有機発光デバイスの最前線-有機 LED からレーザー素子へ向けて 第4回オープンワークショップ「バイオとナノテクノロジーの融合研究」,日本科学未 来館,2007年11月9~10日

(国際)

- C. Adachi, Y. Kawamura and H. Yamamoto Exciton annihilation at high current density in organic light emitting diodes IDW, Fukuoka, 2003.12.3-5
- 2. C. Adachi

Exciton annihilation processes under electrical pumping Korea Japan Joint Forum 2004 "Organic Materials for Electronics and Photonics", Okinawa, 2004, 11. 3-6

- 安達千波矢 Mechanism of high efficiency electrophosphorescence TAC-Display Meeting, 台湾工業技術院(ITRI), 新竹, Taiwan, 2005. 2. 25
- 安達千波矢 Recent progress on OLED Department of Materials Science Seminar, Seoul National Univ., Seoul, Korea, 2005. 3. 24
- Adachi Challenges for novel organic light emitting devices The 5th International Meeting on Information Display (IMID 2005), Seoul, 2005.7.19-23
- Adachi Challenge for novel organic light emitting devices The 4th TOPLEDA International Conference, Taipei, Taiwan, 2005. 11. 25-26
- Adachi Organic light emitting transistor- Fundamental Characteristics and Applications– IDW/AD'05, Tokushima, 2005.12.6-9
- C. Adachi, H. Nakanotani and T. Matsushima Prospects for organic semiconductor lasers from an organic solid state film XXIst IUPAC symposium on photochemistry, Kyoto, 2006.4.2-7
- C. Adachi, H. Nakanotani, T. Matsushima and S. Akiyama, and Y. Kawamura Amplified spontaneous emission characteristics and low-threshold mechanism in organic solid state thin film based on styrylbenzene derivatives SPIE International Symposium on Optics & Photonics, San Diego, USA, 2006.8.13-17

- C. Adachi and T. Matsushima High current density injection and transport into organic layers SSDM, Yokohama, 2006.9.12-15
- C. Adachi, T. Matsushima and H. Nakanotani Extremely high current density injection and transport over MA/cm2 into organic thin films aiming for organic laser diodes ICON9/ICOPE2006, Brugge, 2006.9.24-28
- C. Adachi Organic light emitting transistor-operation mechanism and novel applications 2nd Plastic Electronics Conference and Showcase, Frankfurt, Germany, 2006.10.24-25
- C. Adachi, T. Matsushima and H. Nakanotani High Density Carrier Injection and Transport into Organic Thin Films -Device Physics and Novel Light Emitting Applications Materials Research Society (MRS), Boston, USA, 2006.11.26-12.1
- Chihaya Adachi Ambipolar organic field effect transistor aiming for efficient electroluminescence SPIE Optics + Photonics 2007, San Diego, USA, 2007.8.26-30
- 15. Chihaya Adachi Very low-threshold amplified spontenous emission characteristics of bis-styrylbenzene derivatives and their electrical pumping Optical Society of America, San Jose, USA, 2007.9.16-20
- C. Adachi, T. Matsushima, H. Nakanotani, D. Yokoyama and M. Yahiro Organic Light Emitting Devices from OLED to Organic Laser Diode AOE2007, Shanghai, China, 2007.10.17-19
- C. Adachi Frontier of Organic Light Emitting Devices IWPSD 2007, Mumbai, India, 2007.12.16-20
- C. Adachi Recent Progress on Organic Light Emitting Devices- from OLED to Organic Laser Diode-IACS, Kolkata, India, 2007.12.20

② 口頭発表 (国内会議 134件、国際会議 24件)

(国内)

- 安達千波矢 高効率有機 LED の光物理過程 印刷・情報記録・表示研究会講座(高分子学会),化学会館ホール,東京,2003年2月 20~21日
- 合志憲一,安達千波矢 ゲストーホスト系におけるリン光材料の発光メカニズム 電気学会・電子材料研究会,電気学会,市ヶ谷,2003年2月28日

- 安達千波矢 自己組織化とフォトニクスデバイス ジョイントフォラム「自己組織化とは何かーナノテクノロジーを支えるものー」物質 材料研究機構ナノテクノロジー総合支援プロジェクトセンター、ニドム、苫小牧、2003 年3月3日~5日
- 4. 安達千波矢 有機リン光デバイスの発光メカニズムと展望 応用物理学会有機分子・バイオエレクトロニクス分科会研究会,全共連ビル,東京, 2003年3月12日
- 5. 小山田崇人,松重和美,雀部博之,安達千波矢 陽極とCu:TCNQ間に有機層を含有する有機スイッチングデバイス 第50回応用物理学会関係連合講演会,神奈川大学,2003年3月26~30日
- 油川祐基、小山田崇人、雀部博之、安達千波矢 超薄膜領域における有機TFTの素子特性 第50回応用物理学会関係連合講演会、神奈川大学、2003年3月26~30日
- 大澤信晴,安達千波矢 ペリレン誘導体のn型半導体FET特性 第50回応用物理学会関係連合講演会,神奈川大学,2003年3月26~30日
- 8. 小山田崇人,前田千春,雀部博之,安達千波矢 低仕事関数金属による有機LEDのOLED特性と厚膜デバイス 第50回応用物理学会関係連合講演会,神奈川大学,2003年3月26~30日
- 9. 小山田崇人,前田千春,吉崎浩樹,雀部博之,安達千波矢 新規電子注入材料による透明有機LEDの電子注入特性 第50回応用物理学会関係連合講演会,神奈川大学,2003年3月26~30日
- 山本英利,小山田崇人,雀部博之,安達千波矢 光導波路型有機半導体レーザーの陰極構造の最適化 第50回応用物理学会関係連合講演会,神奈川大学,2003年3月26~30日
- 11. 合志憲一, Julie J. Brown, 雀部博之, 安達千波矢 低温におけるIr(ppy)3 の特異な発光特性 第50回応用物理学会関係連合講演会, 神奈川大学, 2003年3月26~30日
- 12. 横山亘,小山田崇人,合志憲一,雀部博之,安達千波矢 蛍光材料を用いたOLEDの量子効率の電流密度依存性 第50回応用物理学会関係連合講演会,神奈川大学,2003年3月26~30日
- 13. 横山亘, 雀部博之, 安達千波矢 有機半導体薄膜における高電流密度(J~1000A/cm2)の実現 第50回応用物理学会関係連合講演会, 神奈川大学, 2003年3月26~30日
- 合志憲一,猪股寛子, Julie J. Brown, 雀部博之, 安達千波矢 Ir(ppy)3の三重項励起状態の閉じ込めと散逸過程 第50回応用物理学会関係連合講演会,神奈川大学, 2003年3月26~30日

- 15. 安達千波矢
 有機リン光デバイスの到達点と今後の課題
 ファインテック・ジャパン専門技術セミナー,東京ビックサイト,東京,2003 年 7 月 3 日
- 16. 安達千波矢
 リン光性有機 EL 材料の光化学過程
 (財)光産業技術振興協会 高効率有機デバイス推進機構 第1回補完研究講演会,東京,2003 年7月10日
- 17. 安達千波矢 新しいプラスチックエレクトロニクスの登場
 日本化学会北海道支部 夢・化学-21 委員会 特別講義 I, 千歳科学技術大学, 2003 年8月3日
- 小山田崇人,前田千春,雀部博之,安達千波矢 有機 LED における Cs 合金の高効率電子注入機構の解明 第 64 回応用物理学会学術講演会,福岡大学,2003 年 8 月 30~9 月 2 日
- 小山田崇人, 雀部博之, 安達千波矢
 MgAu 合金による電子注入特性と特異な安定性
 第 64 回応用物理学会学術講演会, 福岡大学, 2003 年 8 月 30~9 月 2 日
- 小山田崇人,河村祐一郎,小山珠美,雀部博之,安達千波矢 共蒸着法による Eu(DPM)₃:BCP キレート錯体の形成と有機 LED 第 64 回応用物理学会学術講演会,福岡大学,2003 年 8 月 30~9 月 2 日
- 合志憲一, Julie. J. Brown, 雀部博之, 安達千波矢 Ir(ppy)₃の励起子拡長の検討 第 64 回応用物理学会学術講演会, 福岡大学, 2003 年 8 月 30~9 月 2 日
- 22. 山本英利,河村祐一郎,雀部博之,安達千波矢
 ビススチルベンゼン誘導体の ASE 特性の温度依存性
 第 64 回応用物理学会学術講演会,福岡大学,2003 年 8 月 30~9 月 2 日
- 23. 河村祐一郎, 合志憲一, 雀部博之, 安達千波矢 高強度励起下における Ir(ppy)₃:CBP 共蒸着膜の光物性 第 64 回応用物理学会学術講演会, 福岡大学, 2003 年 8 月 30~9 月 2 日
- 24. 河村祐一郎、山本英利、雀部博之、安達千波矢
 有機半導体薄膜からの紫外 ASE
 第 64 回応用物理学会学術講演会、福岡大学、2003 年 8 月 30~9 月 2 日
- 25. 高橋教悦,合志憲一,雀部博之,安達千波矢
 Alq3単結晶の光物性
 第 64 回応用物理学会学術講演会,福岡大学,2003 年 8 月 30~9 月 2 日

- 26. 四十物孝憲,山本英利,河村祐一郎,皐月真,安達千波矢 有機半導体レーザーに用いる低閾値化を目指したスチリル系蛍光材料の分子設計 第64回応用物理学会学術講演会,福岡大学,2003年8月30~9月2日
- 27. 安達千波矢
 有機エレクトロニクスの展開
 千歳オフィス・アルカディア企業誘致推進協議会 光セミナーin 東京 2003,地域振興
 整備公団本部,東京,2003年10月21日
- 28. 河村祐一郎,安達千波矢
 リン光材料の発光効率と励起状態失活過程
 CIF4 サテライトフォーラム 有機半導体デバイスの基礎物理,ニドム,苫小牧,2003
 年12月5日
- 29. 小山田崇人,安達千波矢
 CsAl 電極の高効率電子注入特性
 CIF4 サテライトフォーラム 有機半導体デバイスの基礎物理,ニドム,苫小牧,2003
 年 12 月 5 日
- 30. 合志憲一,安達千波矢 イリジウム化合物の特異な温度特性 CIF4 サテライトフォーラム 有機半導体デバイスの基礎物理,ニドム、苫小牧,2003 年 12 月 5 日
- 31. 安達千波矢
 有機半導体レーザーの構築とデバイス物理の解明
 科学技術振興機構 ナノテクノロジー分野別バーチャルラボ発表会,日本科学未来館、
 東京,2004年2月18日
- 32. 河村祐一郎 イリジウム錯体を用いた有機発光ダイオード 錯体化学研究会 錯体化学の挑戦 - Challenges for Coordination Chemistry & Science-, 岡 崎,愛知, 2004 年 3 月 1 日
- 33. 安達千波矢

有機 EL のデバイス基礎物理過程-有機半導体デバイス物理の確立に向けて 情報科学用有機材料第 142 委員会 B(インテリジェント有機材料)研究会, 弘済会館, 東京, 2004 年 3 月 5 日

- 34. 安達千波矢 有機金属リン光材料の PL 及び EL 過程 応用物理学会 有機分子バイオエレクトロニクス分科会,機械振興会館,東京,2004 年3月9日
- 35. 安達千波矢 有機金属リン光 OLED と光物性過程の解明 名古屋大学,2004 年 3 月 12 日

- 36. 安達千波矢
 "nano-tech 2004 国際ナノテクノロジー総合展・技術会議"出展,東京ビッグサイト, 東京, 2004 年 3 月 17~19 日
- 37. 吉田昌史, 土田哲平, 倉田高明, 池田征明, 雀部博之, 安達千波矢 ジキサンテン誘導体の高効率ホール注入による OLED の低駆動電圧化 日本化学会第 84 春季年会, 関西学院大学, 2004 年 3 月 26~29 日
- 38. 猪俣寛子, 合志憲一, 増子琢磨, 木村明博, 金野徹, 今井敏郎, 雀部博之, Julie J. Brown, 安達千波矢 トリアジン誘導体のキャリア輸送特性 日本化学会第 84 春季年会, 関西学院大学, 2004 年 3 月 26~29 日
- 39. 平田邦雄,小山田崇人,小山珠美,今井敏郎,雀部博之,安達千波矢 DNA-CTMAの導電性とOLED 特性 日本化学会第 84 春季年会,関西学院大学,2004 年 3 月 26~29 日
- 40. 小山田崇人,平山泰生,雀部博之,安達千波矢 有機 LED における厚膜 HTL のホール輸送機構 第 51 回応用物理学関係連合講演会,東京工科大学,2004 年 3 月 28~31 日
- 41. 小山田崇人,佐藤祐,雀部博之,安達千波矢
 α-NPD/Alq₃素子における電界消光現象
 第51回応用物理学関係連合講演会,東京工科大学,2004年3月28~31日
- 42. 合志憲一, Julie J. Brown, 雀部博之, 安達千波矢 固体薄膜中における Ir(ppy)₃の発光機構
 第 51 回応用物理学関係連合講演会, 東京工科大学, 2004 年 3 月 28~31 日
- 43. 河村祐一郎, 雀部博之, 安達千波矢 アリールアミン系材料における ASE 支配因子の探索 第 51 回応用物理学関係連合講演会, 東京工科大学, 2004 年 3 月 28~31 日
- 44. 河村祐一郎, Jason Brooks, Julie J. Brown, 雀部博之, 安達千波矢 CBP 共蒸着膜中における Ir 錯体の発光効率と分子間相互作用 第 51 回応用物理学関係連合講演会, 東京工科大学, 2004 年 3 月 28~31 日
- 45. 山本英利, 笠嶋大樹, 横山亘, 脇本健夫, 雀部博之, 安達千波矢 高熱伝導率基板を用いた有機薄膜への最大電流密度~12000A/cm² の実現 第 51 回応用物理学関係連合講演会, 東京工科大学, 2004 年 3 月 28~31 日
- 46. 山本英利,小山田崇人,青島正一,雀部博之,安達千波矢 特殊 Conical 型 Target を用いた有機 EL 用低ダメージ ITO スパッタ製膜 第 51 回応用物理学関係連合講演会,東京工科大学,2004 年 3 月 28~31 日
- 47. 笠島大樹、山本英利、雀部博之、安達千波矢
 有機 LED 素子構造を用いた高電流密度(300~A/cm²)の実現と律速過程
 第51 回応用物理学関係連合講演会、東京工科大学、2004 年 3 月 28 ~31 日

- 48. 四十物孝憲,山本英利,河村祐一郎,合志憲一,佐々木正臣,雀部博之,安達千波矢 スチリルベンゼン誘導体の低閾値 ASE 特性(E_{ASE}=0.5µJ/cm²) 第 51 回応用物理学関係連合講演会,東京工科大学,2004 年 3 月 28~31 日
- 49. 久保田大介, 雀部博之, 安達千波矢
 2 つの有機層を有する有機 FET の光照射によるメモリー効果
 第 51 回応用物理学関係連合講演会, 東京工科大学, 2004 年 3 月 28~31 日
- 50. Olaf Karthaus, 栗村茂也,小山田崇人,安達千波矢 TPD マイクロドームを用いた新型有機 EL デバイスの作成 第 51 回応用物理学関係連合講演会,東京工科大学,2004 年 3 月 28~31 日
- 51. 佐藤祐,外山弥,児玉淳,猿渡紀男,井上博史,合志憲一,安達千波矢 ジイミン-ジチオレート系白金錯体のりん光特性と有機 EL 素子化検討 第 51 回応用物理学関係連合講演会,東京工科大学,2004 年 3 月 28~31 日
- 52. 安達千波矢 有機 EL の基礎,デバイス物理,展望(Tutorial セッション) SEMI FPD Expo Japan 2004,東京ビッグサイト,東京, 2004 年 4 月 7~9 日
- 53. 安達千波矢
 有機リン光素子の現状と課題
 SEMI FPD Expo Japan 2004,東京ビッグサイト,東京,2004年4月7~9日
- 54. 河村祐一郎,安達千波矢
 "NIKKEI MICRODEVICES<FPD International 2004>プレセミナー 第4回「有機 EL パネル,材料からの長寿命化」",東京ビッグサイト,東京,2004年4月7~9日
- 55. 河村祐一郎,安達千波矢 イリジウム錯体とホスト材料の相互作用 日本学術振興会第142委員会 C 部会有機光エレクトロニクス部会第1回研究会,日本 科学未来館,2004年6月16日
- 56. 安達千波矢 電流励起を目指した有機半導体レーザーの材料デバイス設計 日本学術振興会第142委員会 C部会有機光エレクトロニクス部会第2回研究会(M&BE 研究会),東工大・国際交流会館,2004年7月16日
- 57. 安達千波矢

有機リン光デバイス プラスチック・エレクトロニクスの新展開研究会,東大生産技術研究所,2004 年 7 月 22 日

- 58. 中野谷一,小山田崇人, 雀部博之, 安達千波矢 OLED へのパルス電圧印加による高電流密度の実現と励起子 Annihilation の抑制 第 65 回応用物理学会学術講演会,東北学院大学, 2004 年 9 月 1~4 日
- 59. 小山田崇人,内生蔵広幸,奥山優,下地規之,松重和美,雀部博之,安達千波矢 活性層に TPTPT を用いた発光型トランジスターの実現とチャネル長依存性

第65回応用物理学会学術講演会, 東北学院大学, 2004年9月1~4日

- 60. 内生蔵広幸,小山田崇人,菅沼直俊,松重和美,雀部博之,安達千波矢 低分子共蒸着膜における ambipolar 特性と発光トランジスターの実現 第 65 回応用物理学会学術講演会,東北学院大学,2004 年 9 月 1~4 日
- 61. 小山田崇人,村瀬清一郎,富永剛,前田千春,雀部博之,安達千波矢 Cs:電子輸送性化合物共蒸着膜を電子注入層に用いた有機 LED の低電圧駆動化 (J~100mA/cm2 at V=4V)
 第 65 回応用物理学会学術講演会,東北学院大学,2004年9月1~4日
- L. V. M. Castro, T. Oyamada, Y. Kawamura, M. Anzai, T. Miki, H. Sasabe and C. Adachi Molecular interaction between Alq3 and hole transport materials which enhances non-radiative decay rates
 第 65 回応用物理学会学術講演会,東北学院大学,2004 年 9 月 1~4 日
- 63. 今田直人,河村祐一郎, Jason Brooks, Julie J. Brown, 雀部博之,安達千波矢 青色リン光材料の固体媒体中における発光量子効率とエネルギー失活過程 第 65 回応用物理学会学術講演会,東北学院大学,2004 年 9 月 1~4 日
- 64. 今田直人,河村祐一郎, Jason Brooks, Julie J. Brown, 雀部博之,安達千波矢 100%の PL 量子収率を有する赤色リン光錯体 PQ2Ir(acac)
 第 65 回応用物理学会学術講演会,東北学院大学,2004 年 9 月 1~4 日
- 65. 遠藤礼隆,小山田崇人,河村祐一郎, Jason Brooks, Julie J. Brown, 雀部博之,安達千波 矢 環状シロキサン化合物を用いた高効率有機リン光 LED 素子 第 65 回応用物理学会学術講演会,東北学院大学,2004 年 9 月 1~4 日
- 66. 河村祐一郎,今田直人, Jason Brooks, Julie J. Brown, 雀部博之,安達千波矢 リン光性イリジウム錯体の発光効率と濃度消光過程
 第 53 回高分子討論会,北海道大学,2004 年 9 月 15~17 日
- 67. 中島嘉之,山下大輔,遠藤礼隆,安達千波矢,宇田応之 遠紫外 PESA 法による有機 EL 材料の電子状態測定
 第 53 回高分子討論会,北海道大学,2004 年 9 月 15~17 日
- 68. Olaf Karthaus, 小山田崇人,安達千波矢
 ディウェティング現象による有機発光材料のマイクロパターニング
 第 53 回高分子討論会,北海道大学,2004 年 9 月 15~17 日
- 69. 吉田昌史, 土田哲平, 倉田高明, 池田征明, 雀部博之, 安達千波矢 有機 LED におけるジキサンテン誘導体の高効率ホール注入機構の解明 第 53 回高分子討論会, 北海道大学, 2004 年 9 月 15~17 日
- 70. 笠嶋大樹,猪俣寛子,吉崎浩樹,雀部博之,安達千波矢 N,N'-ビスアリールカルバゾール誘導体をホストとする有機リン光EL素子の発光特性 第53回高分子討論会,北海道大学,2004年9月15~17日
- 71. 高橋敦史,安達千波矢 高効率熱活性化遅延蛍光材料の開発と有機 EL 発光材料への展開

第53回高分子討論会,北海道大学,2004年9月15~17日

- 72. 小山田崇人, 雀部博之, 安達千波矢
 α-NPD/Alq3 素子の電界消光現象と EL 効率との相関
 第 53 回高分子討論会, 北海道大学, 2004 年 9 月 15~17 日
- 73. 合志憲一,河村祐一郎, Jason Brooks, Julie J. Brown, 雀部博之,安達千波矢 固体薄膜中における Ir(ppy)3 の励起エネルギー失活過程の解明 第 53 回高分子討論会,北海道大学,2004 年 9 月 15~17 日
- 74. 安達千波矢
 有機 EL の作動機構
 高分子学会有機 EL 研究会,タワーホール船堀,千葉,2004 年 10 月 6 日
- 75. 安達千波矢
 有機発光デバイスの到達点と新展開
 未来産業を支える高分子材料,第8回日本海ポリマーワークショップ,高分子学会北
 陸支部,新潟県工業技術試験場,2004年12月10日
- 76. 安達千波矢
 有機固体薄膜における電流励起過程と励起子失活過程
 2004(H16) 京都大学 VBL 先端電子材料学講義,京都大学桂キャンパス・電気系第一講 義室 A1-001,2004 年 12 月 20 日
- 77. 安達千波矢
 有機半導体発光デバイスの到達点と新展開
 東北大学 金属材料研究所,2005年1月28日
- 78. 安達千波矢

有機半導体から見たDNAの電子伝導性と電子デバイスへの応用 DNAワークショップ プログラム,ナノテクノロジー分野別バーチャルラボ領域横断企 画, JST ワークショップ, 熱海, 2005年3月13日

- 79. 安達千波矢 有機半導体レーザーダイオードの研究開発の最前線 ワイドギャップ半導体光・電子デバイス第162委員会学振162委員会,上智大学,四谷, 2005年3月18日
- 80. 遠藤礼隆, 岩澤哲郎, 徳永信, 大洞康嗣, 雀部博之, 辻康之, 安達千波矢 ピリジン誘導体をホスト材料とする高効率有機リン光LED素子 第52回応用物理学関係連合講演会, 埼玉大学, 2005年3月29~4月1日
- 81. 遠藤礼隆,中野谷一,角谷公宏,雀部博之,大北雅一,安達千波矢 アセチレン連結フェニルカルバゾール誘導体のPL及びOLED特性 第52回応用物理学関係連合講演会,埼玉大学,2005年3月29~4月1日
- 82. 河村祐一郎, Jason Brooks, Julie J. Brown, 鈴木健吾, 雀部博之, 安達千波矢 Ir錯体の吸収・誘導放出断面積と増幅自然放出活性 第52回応用物理学関係連合講演会, 埼玉大学, 2005年3月29~4月1日

- 83. 吉田昌史, 雀部博之, 安達千波矢 CuPcをホール注入層に用いたOLEDの特異な膜厚依存性 第52回応用物理学関係連合講演会, 埼玉大学, 2005年3月29~4月1日
- 84. 高橋教悦, 合志憲一, Jason Brooks, Julie J. Brown, 河村祐一郎, 雀部博之, 安達千波 矢 様々なIr金属錯体ホスト中におけるAlq₃の燐光PL・EL特性 第52回応用物理学関係連合講演会, 埼玉大学, 2005年3月29~4月1日
- 85. 小山田崇人,内生蔵広幸,奥良彰,下地規之,松重和美,雀部博之,安達千波矢 Rubrene:TPPy 共蒸着膜を用いた有機発光型トランジスター(I) チャネル長依存性 第52回応用物理学関係連合講演会,埼玉大学,2005年3月29~4月1日
- 86. 小山田崇人,内生蔵広幸,奥良彰,下地規之,松重和美,雀部博之,安達千波矢 Rubrene:TPPy 共蒸着膜を用いた有機発光型トランジスター(II)S-D 電極依存性 第52回応用物理学関係連合講演会,埼玉大学,2005年3月29~4月1日
- 87. 中野谷一,河村祐一郎,雀部博之,安達千波矢 ビススチリルベンゼン誘導体を用いた低閾値光励起型有機DFB固体レーザー 第52回応用物理学関係連合講演会,埼玉大学,2005年3月29~4月1日
- 88. 中野谷一,河村祐一郎,合志憲一,雀部博之,安達千波矢 ビススチリルベンゼン誘導体を発光層に用いた有機EL素子のRoll-off特性 第52回応用物理学関係連合講演会,埼玉大学,2005年3月29~4月1日
- 89. 合志憲一, Jason Brooks, Julie J. Brown, 雀部博之, 安達千波矢 Ir(ppy)₃の励起三重項準位におけるスピン緩和過程 第52回応用物理学関係連合講演会, 埼玉大学, 2005年3月29~4月1日
- 90. 中野谷一, 雀部博之, 安達千波矢
 4,4'-bis[(N-carbazole)styryl]biphenyl(BSB-Cz)の CW 励起下における発光特性
 第 66 回応用物理学会学術講演会, 徳島大学, 2005 年 9 月 7~11 日
- 91. 合志憲一, Jason Brooks, Julie J. Brown, 雀部博之, 安達千波矢 CBP ホスト中における Ir(ppy)₃の三重項励起子拡散過程
 第 66 回応用物理学会学術講演会, 徳島大学, 2005 年 9 月 7~11 日
- 92. 河崎拓也, 遠藤礼隆, Jason Brooks, Julie J. Brown, 雀部博之, 安達千波矢 新規リン光材料のキャリア輸送性と再結合過程の制御 第 66 回応用物理学会学術講演会, 徳島大学, 2005 年 9 月 7~11 日
- 93. 孫京秀,河村祐一郎,安達千波矢,三品具文,山本夕可,中原純一郎
 4,4'-bis[9-dicarbazolyl]-2,2'-biphenyl (CBP)のピコ秒時間分解発光スペクトル
 第 66 回応用物理学会学術講演会,徳島大学,2005 年 9 月 7~11 日
- 94. 高橋敦史, 遠藤礼隆, 安達千波矢 新規電子輸送性キノリン誘導体の開発と有機 LED への応用 第 66 回応用物理学会学術講演会, 徳島大学, 2005 年 9 月 7~11 日
- 95. 合志憲一, 雀部博之, 安達千波矢 CuPc をホール注入層に用いた OLED の I-V 特性解析

第66回応用物理学会学術講演会, 徳島大学, 2005年9月7~11日

- 96. 松島敏則, 雀部博之, 安達千波矢 フォトリソグラフィーを用いた超微小有機ダイオードの作製と超高電流密度 (J_{MAX}=18,000A/cm²)の実現 第 66 回応用物理学会学術講演会, 徳島大学, 2005 年 9 月 7~11 日
- 97. カートハウス・オラフ,新垣志保,和田敏裕,安達千波矢,遠藤礼隆 パターン化と光物性の測定
 第 54 回高分子討論会,山形大学,2005 年 9 月 20~22 日
- 98. 安達千波矢 低閾値有機レーザー材料の開発と固体色素レーザーの実現 JST「超高速・超省電力高性能ナノデバイス・システムの創製」領域シンポジウム,東京ガーデ ンパレス,2005年10月18日
- 99. 寺尾佑生, 雀部博之, 安達千波矢 積層型有機太陽電池における短絡電流の支配因子の解明 第 53 回応用物理学関係連合講演会, 武蔵工業大学, 2006 年 3 月 22~26 日
- 100. 松島敏則, 雀部博之, 安達千波矢
 1µm²以下の素子面積を有する CuPc 薄膜素子のキャリア伝導機構
 第 53 回応用物理学関係連合講演会, 武蔵工業大学, 2006 年 3 月 22~26 日
- 101. 松島敏則, 雀部博之, 安達千波矢 有機薄膜における電流密度-電圧特性の特異な温度依存性 第 53 回応用物理学関係連合講演会, 武蔵工業大学, 2006 年 3 月 22~26 日
- 102. 中野谷一,渡邊禎之,加藤隆二,雀部博之,安達千波矢 有機薄膜の強励起下における発光特性と励起状態吸収との相関 第 53 回応用物理学関係連合講演会,武蔵工業大学,2006 年 3 月 22~26 日
- 103. 遠藤礼隆, 鈴木健吾, 吉原利忠, 飛田成史, 雀部博之, 安達千波矢 溶液中における Ir 錯体の絶対 PL 量子収率測定及び光物性 第 53 回応用物理学関係連合講演会, 武蔵工業大学, 2006 年 3 月 22~26 日
- 104. 高橋敦史,遠藤礼隆,安達千波矢 新規な高効率熱活性化遅延蛍光性ポルフィリン誘導体の開発と有機 LED への展開 第 53 回応用物理学関係連合講演会,武蔵工業大学,2006 年 3 月 22~26 日
- 105. 青沼昌樹,小山田崇人,三木鉄蔵,雀部博之,安達千波矢 厚膜有機 EL 素子用 HTM の開発とガラス転移温度との相関 第 53 回応用物理学関係連合講演会,武蔵工業大学,2006 年 3 月 22~26 日
- 106. 中原誠,皆川正寛,田所豊康,小山田崇人,雀部博之,安達千波矢 TSC 測定による有機 EL デバイスの劣化機構の解析 第 53 回応用物理学関係連合講演会,武蔵工業大学,2006 年 3 月 22~26 日
- 107. 遠藤礼隆,鈴木健吾,吉原利忠,飛田成史,雀部博之,安達千波矢 溶液中における有機 EL 材料の絶対 PL 量子収率測定及び光物性

有機 EL 討論会第2回例会,日本科学未来館 みらい CAN ホール,東京,2006年5月 12~13日

- 108. 遠藤礼隆, 合志憲一, 鈴木健吾, 雀部博之, 安達千波矢 Ir錯体をホスト - ゲスト材料として用いた固体薄膜の光物性 第67回応用物理学会学術講演会, 立命館大学, 2006年8月29日~9月1日
- 109. 松島敏則, 雀部博之, 安達千波矢 低電流密度から高電流密度域におけるCuPc薄膜素子のキャリア伝導機構 第67回応用物理学会学術講演会「講演奨励賞受賞記念講演」, 立命館大学, 2006年8月 29日~9月1日
- 110. 松島敏則,安達千波矢 a-6T正孔注入層とCs:PoPy2電子注入層を用いた超低駆動電圧有機EL素子 第67回応用物理学会学術講演会,立命館大学,2006年8月29日~9月1日
- 111. 松島敏則,安達千波矢 有機/有機ヘテロ接合界面におけるキャリア注入機構 第 67 回応用物理学会学術講演会,立命館大学,2006 年 8 月 29 日~9 月 1 日
- 112. 小山田崇人, C-H Chang, C.C. Wu, T-C. Chao, F-C. Fang, K-T Wong, 安達千波矢
 9,9-diarylfluorene オリゴマーの光学特性と発光デバイスへの応用
 第 67 回応用物理学会学術講演会, 立命館大学, 2006 年 8 月 29 日~9 月 1 日
- 113. 松本直樹,西山正一,安達千波矢
 フルオレン系正孔輸送材料とAlq3との相互作用の解明
 第 67 回応用物理学会学術講演会,立命館大学,2006 年 8 月 29 日~9 月 1 日
- 114. 中野谷一,松本直樹,西山正一,八尋正幸,安達千波矢 新規フルオレン誘導体を用いた有機固体薄膜からの低閾値 ASE 発振の実現 第 67 回応用物理学会学術講演会,立命館大学,2006 年 8 月 29 日~9 月 1 日
- 115. 合志憲一, 八尋正幸, 安達千波矢 有機ポラリトンレーザーを目指した励起子ポラリトンデバイスの設計 第67回応用物理学会学術講演会, 立命館大学, 2006年8月29日~9月1日
- 116. 安達千波矢,八尋正幸,坂上知,内生蔵広幸 有機発光デバイスの新展開-有機発光性トランジスターの登場-2006 年度日本液晶学会討論会,秋田大学,2006 年9月13~15日
- 117. 孫京秀, 今井敏郎, 吉崎浩樹, 安達千波矢 アリール置換窒素ヘテロ環化合物のキャリヤー輸送性と OLED 特性 第55回高分子討論会, 富山大学, 2006 年 9 月 20~22 日
- 118. 松島敏則,安達千波矢 電流励起型有機レーザー素子を目指した *p-i-n*構造を用いた超低電圧駆動有機 EL 素子 第3回有機 EL 討論会,つくば国際会議場多目的ホール,2006年11月9日~10日
- 119. 松島敏則,安達千波矢
 超低駆動電圧有機 LED 実現のための材料・デバイス設計
 高分子学会 06-2 有機 EL 研究会,発明会館ホール,東京,2006 年 12 月 15 日

- 120. 中野谷一, 矢野公規, 八尋正幸, 安達千波矢
 有機-無機へテロ構造を有する両極性トランジスタ
 第 54 回応用物理学会学術講演会, 青山学院大学, 2007 年 3 月 27~30 日
- 121. 木下昇平, 八尋正幸, 池田征明, 桑原博一, 瀧宮和男, 江端英昭, 安達千波矢 DPh-BDS/C60 積層膜による高移動度 ambipolar FET 特性 第 54 回応用物理学関係連合講演会, 青山学院大学, 2007 年 3 月 27~30 日
- 122. 八尋正幸,田中章博,安達千波矢
 ハイパーブランチポリマーの有機 FET ゲート絶縁膜への応用
 第 54 回応用物理学会関係連合講演会,青山学院大学,2007 年 3 月 27~30 日
- 123. 高橋哲生,竹延大志,木下昇平,八尋正幸,安達千波矢,岩佐義宏 両極性テトラセン単結晶トランジスタの発光特性 第 54 回応用物理学会関係連合講演会,青山学院大学,2007 年 3 月 27~30 日
- 124. 洪曉雯, 横山紀昌, 安達千波矢 フェナンスレンオリゴマーを電子輸送層に用いた低駆動電圧有機 LED 第 68 回応用物理学会学術講演会,北海道工業大学,2007 年 9 月 4~8 日
- 125. 松本直樹, 宮崎高則, 西山正一, 原靖, 安達千波矢 9,9-ビス(ビフェニリル)フルオレン誘導体を用いた青色発光素子 第68回応用物理学会学術講演会, 北海道工業大学, 2007年9月4~8日
- 126. 松島敏則,安達千波矢 両極性リンオキサイド誘導体薄膜を用いた高性能単層型有機 EL 素子の作製 第 68 回応用物理学会学術講演会,北海道工業大学,2007 年 9 月 4~8 日
- 127. 松島敏則,安達千波矢 有機/有機ヘテロ界面混合による有機 EL 素子の駆動電圧の低減 第 68 回応用物理学会学術講演会,北海道工業大学,2007 年 9 月 4~8 日
- 128. 横山大輔, 中野谷一, 守分政人, 安達千波矢 カットオフモードに起因する有機膜端面からの狭帯域発光(1):光学現象と理論解析 第68回応用物理学会学術講演会, 北海道工業大学, 2007年9月4~8日
- 129. 横山大輔,中野谷一,瀬戸口陽介,守分政人,大西大,八尋正幸,安達千波矢 カットオフモードに起因する有機膜端面からの狭帯域発光(2):レーザーダイオードへ の展開 第 68 回応用物理学会学術講演会,北海道工業大学,2007 年 9 月 4~8 日
- 130. 中野谷一,安達千波矢 表面プラズモンを介した長距離エネルギー移動による有機 EL 素子からの発光 第 68 回応用物理学会学術講演会,北海道工業大学,2007 年 9 月 4~8 日
- 131. 横山大輔, 中野谷一, 瀬戸口陽介, 守分政人, 大西大, 八尋正幸, 安達千波矢 有機 EL 素子端面からのカットオフ波長における狭帯域発光 有機 EL 討論会 第5回例会, 九州大学筑紫キャンパス, 11月 15~16日

132. 安達千波矢,中野谷一,横山大輔,嘉部量太,八尋正幸 有機レーザーダイオードの最前線-超低閾値材料の開発と光増幅特性-応用物理学会九州支部学術講演会,九州工業大学工学部,2007年12月1~2日

133. 安達千波矢

有機発光ダイオード、有機発光トランジスター、有機レーザーの現状と将来 第 18 回光物性研究会(2007),大阪市立大学 学術情報総合センター,2007 年 12 月 14~15 日

134. 安達千波矢 有機半導体レーザーダイオードを目指した材料・デバイス設計 ナノテクノロジー分野別バーチャルラボ成果報告会,新都市ホール,2008年1月11日

(国際)

- W. Yokoyama and C. Adachi Organic light emitting diodes at very high current density Second International Conference on Molecular Electronics and Bioelectronics, Tokyo, 2003.3.5-7
- C. Adachi Emission Mechanism of 100% Efficiency OLED - Toward Organic Laser Diode UCLA Department of Materials Science and Engineering, Fall Quarter 2003 Seminar Series, Los Angels, USA, 2003.12.12
- C. Adachi Emission mechanism of high efficiency organic electrophosphorescene FPD China, Kunshan Science and Culture Exhibition Center, China, 2004.8.11-13
- C. Adachi Carrier injection over 10KA/cm2 into organic thin films NANO KOREA 2004, Seoul, Korea, 2004.8.24-27
- K. Noda, R. Shirogane, K. Kodama, C. Adachi, K. Aizawa and L. Li Fluorescence Lifetime and Fluorescence spectra of Telaporfinum in Cancer Cells 5th Chitose International Forum on Photonics Science & Technology, CIST, 2004.10.19-20
- Y. Kawamura, K. Goushi, J. Brooks, J. J. Brown, H. Sasabe and C. Adachi Phosphorescence quantum efficiency and intermolecular interaction of iridium (III) complexes in co-deposited films with organic semiconducting hosts Material Research Society (MRS) 2004 Fall Meeting, Boston, 2004.11.28-12.3
- K. Goushi, Y. Kawamura, J. Brooks, J. J. Brown, H. Sasabe and C. Adachi Unusual phosphorescence decay characteristics of Ir(ppy)3 in a solid matrix Material Research Society (MRS) 2004 Fall Meeting, Boston, 2004.11.28-12.3
- H. Yamamoto, H. Kasajima, W. Yokoyama, H. Sasabe and C. Adachi Achievement of extremely high current density of 12000A/cm2 into organic thin films with high thermally conductive substrates Material Research Society (MRS) 2004 Fall Meeting, Boston, 2004.11.28-12.3

- 9. T. Oyamada, H. Uchiuzou, K. Matsushige, H. Sasabe and C. Adachi Organic light-emitting transistors using ambipolar FET characteristics Material Research Society (MRS) 2004 Fall Meeting, Boston, 2004.11.28-12.3
- T. Oyamada, S. Okumura, N. Shimoji, K. Matsushige, H. Sasabe and C. Adachi Electroluminescence of Tetraphenylpyrene in Organic Light-Emitting Field-Effect Transistors The Fifth International Conference on Electroluminescence of Molecular Materials and Related Phenomena (ICEL-5), Phoenix, 2005.1.17-21
- Y. Kawamura, J. Brooks, J. J. Brown, H. Sasabe and C. Adachi 100% phosphorescence efficiency of Ir(III) complexes and the intermolecular interaction and concentration quenching in a solid state film SPIE's International Symposium on Optics & Photonics 2005, San Diego, 2005.7.31-8.4
- H. Nakanotani, H. Sasabe and C. Adachi Low lasing threshold in organic distributed feedback solid state lasers using bisstyrylbenzene derivative as an active material SPIE's International Symposium on Optics & Photonics 2005, San Diego, 2005.7.31-8.4
- Toshinori Matsushima, Chihaya Adachi, and Hajime Nakanotani CW-amplified spontaneous emission from an organic solid-state film 2006 MRS spring meeting, San Francisco, USA, 2006.4.19
- 14. 合志憲一, Jason Brooks, Julie J. Brown, 雀部博之, 安達千波矢 Ir(ppy)₃の励起三重項状態のスピン緩和課程 The 23rd Conference of Photopolymer Science and Technology The International Symposium 2006 Materials & Processes for Advanced Microlithography and Nanotechnology, 千葉大学, 2006. 6.27-30
- T. Matsushima and C. Adachi Injection of current density over MA/cm² in organic thin film and investigation of carrier transport processes from nA/cm² to MA/cm² SPIE International Symposium on Optics & Photonics, San Diego, USA, 2006.8.13-17
- L. Fenenko, C. Adachi, Y. Nakanishi, P. Smertenko and S. Svechnikov Features of electroluminescence of new blue poly(9,9-dioctylfluorenyl-2,7-diyl)-end capped with polyhedral oligomeric silsesquioxanes ICEPOM-6, Gurzuf, Ukraine, 2006.9.25-29
- C. Adachi and T. Matsushima, Injection and Transport of Extremely High Current Densities in Organic Thin-Film Devices Optical Society of America (OSA), Rochester, USA, 2006.10.8-12
- Kyung Soo Son, Kenichi Goushi, Masayuki Yahiro, Toshiro Imai, Hiroki Yoshizaki and Chihaya Adachi Carrier Transport Properties of Aryl-substituted Heterocycle Compounds and their Electroluminescence Characteristics in Blue OLED 2nd International symposium of Functional Innovation of Molecular Informatics, Fukuoka, Japan, 2006.11.1-2
- T. Matsushima and C. Adachi, Extremely low-voltage organic light emitting diodes with p-doped a-sexithiophene hole transport and n-doped phenyldipyrenylphosphine oxide electron transport layers Materials Research Society (MRS), San Francisco, USA, 2007.4.9-13

- H. Nakanotani, K. Yano and C. Adachi Ambipolar field-effect transistor based on organic-inorganic oxide heterostructure E-MRS 2007 Spring Meeting, Strasbourg, France, 2007.5.28-6.1
- 孫京秀,八尋正幸,今井敏郎,吉崎浩樹,安達千波矢 ジアリールアミノ置換窒素ヘテロ還化合物を新規ホスト材料で用いた青色リン光 OLED 特性 The 24th Conference of Photopolymer Science and Technology The International Symposium 2007 Materials & Processes for Advanced Microlithography and Nanotechnology,千葉大学,2007.6.26-29
- C. Adachi Organic Laser Diode-Materials, Devices and Applications-International Joint Symposium (Kyushu University and Yeungnam University), Yeungnam University, Korea, 2007.9.10
- C. Adachi Very Low-threshold ASE Characteristics of Bis-styrylbenzene Derivatives and Their Electrical Pumping aiming for Organic Laser Diode ICAMD2007, Jeju, Korea, 2007.12.12-14
- H.W. Hung, N.Yokoyama, M.Yahiro and C.Adachi Low Driving Voltage OLED Using Phenanthrene Oligomers as Electron Transport Layer ISFED2007, Ambassador Hotel, Hsinchu, Taiwan, 2007.12.17-18
 - ポスター発表
 (国内会議 7件、国際会議 46件)

(国内)

- 遠藤礼隆,鈴木健吾,吉原利忠,飛田成史,雀部博之,安達千波矢 Ir錯体の絶対PL量子収率測定及び光物性
 2006年日本化学会西日本大会,琉球大学,2006年11月18~19日
- 松島敏則,八尋正幸,安達千波矢 Thermally stimulated current 法による C60/絶縁層界面の電子トラップ準位の測定 2007 年春季 第 54 回応用物理学関係連合講演会,青山学院大学,2007 年 3 月 27~30 日
- 3. 中野谷一,秋山誠治,八尋正幸,大西大,守分政人,吉原利忠,飛田成史,安達千波 矢,9,9'-spirobifluorene 誘導体を活性層とする発光性有機トランジスタ 第 54 回応用物理学会学術講演会,青山学院大学,2007 年 3 月 27~31 日
- 4. 松本直樹,西山正一,高橋満,安達千波矢 アリールアミン系正孔輸送材料と Alq₃の Exciplex 形成及び電界消光現象の解析 第 54 回応用物理学関係連合講演会,青山学院大学,2007 年 3 月 27~30 日
- 5. 瀬戸口陽介,中野谷一,秋山誠治,安達千波矢 単層型 OLED の高電流密度下における Roll-Off 特性の改善 第 54 回応用物理学関係連合講演会,青山学院大学,2007 年 3 月 27~30 日
- 6. 中野谷一 有機半導体レーザ用低閾値活性層材料の開発とトランジスタ型レーザ素子への展開

ナノテクノロジー分野別バーチャルラボ成果報告会,新都市ホール,2008年1月11日

7. 横山大輔 有機発光ダイオード端面からの狭帯域発光現象とその光増幅特性 ナノテクノロジー分野別バーチャルラボ成果報告会,新都市ホール,2008年1月11日

(国際)

- Y. Kawamura, H. Yamamoto, K. Goushi, H. Yoshizaki, H. Sasabe and C. Adachi Elucidation of Controlling Factor for ASE Threshold in Ultraviolet/deep Blue Emissive Organic Semiconductor Films 4th Chitose International Forum on Photonics Science & Technology, CIST, 2003.12.3-4
- T. Oyamada, H. Sasabe and C. Adachi Formation of a MgAu Alloy Cathode by Photolithography and the Applications for Organic Light-Emitting Diodes and Organic Field-Effect transistors 4th Chitose International Forum on Photonics Science & Technology, CIST, 2003.12.3-4
- T. Oyamada, Y. Kawamura, T. Koyama, H. Sasabe and C. Adachi Formation of a Eu(DPM)3:BCP Chelate Complex by Vacuum Co-deposition and the Application for Organic Light-Emitting Diodes 4th Chitose International Forum on Photonics Science & Technology, CIST, 2003.12.3-4
- K. Goushi, J. J. Brown, H. Sasabe and C. Adachi Ir(ppy)3 Triplet Excited Energy Transfer into Adjacent Hole Transport Layers 4th Chitose International Forum on Photonics Science & Technology, CIST, 2003.12.3-4
- H. Inomata, T. Masuko, T. Konno, T. Imai, H. Sasabe, J. J. Brown and C. Adachi Carrier Transport Properties of the Triazine Derivatives 4th Chitose International Forum on Photonics Science & Technology, CIST, 2003.12.3-4
- H. Yamamoto, Y. Kawamura, H. Sasabe and C. Adachi Temperature Dependence of ASE Characteristics of a Bis-styrylbenzene Derivative 4th Chitose International Forum on Photonics Science & Technology, CIST, 2003.12.3-4
- H. Yamamoto, H. Kasajima, W. Yokoyama, H. Sasabe and C. Adachi Achievement of Extremely High Current Density of 6635A/cm2 Using a Phthalocyanine Layer with a Thermally Conductive Substrate 4th Chitose International Forum on Photonics Science & Technology, CIST, 2003.12.3-4
- K. Hirata, N. Suganuma, T. Oyamada, H. Sasabe and C. Adachi Ambipolar Field-Effect Transistor Behavior of the CuPc and PTCBI Mixing Layer 4th Chitose International Forum on Photonics Science & Technology, CIST, 2003.12.3-4
- M. Yoshida, T. Tsuchida, T. Kurata, M. Ikeda and Chihaya Adachi High Efficiency the Hole Injection Characterisics of Dixanthene Derivatives in OLEDs 4th Chitose International Forum on Photonics Science & Technology, CIST, 2003.12.3-4
- T. Aimono, Y. Kawamura, H. Yamamoto, H. Sasabe, M. Satsuki and C. Adachi Molecular Design of Fluorescent Styrylbenzene Derivatives (SBD) Aiming for Low Threshold Amplified Spontaneous Emission 4th Chitose International Forum on Photonics Science & Technology, CIST, 2003.12.3-4

- H. Kasajima, H. Yamamoto, Y. Kawamura, H. Sasabe and C. Adachi Achievement of High Current Density of 320A/cm2 in α-NPD/Alq3 Based OLED 4th Chitose International Forum on Photonics Science & Technology, CIST, 2003.12.3-4
- N. Takahashi, K. Goushi, Y. Kawamura, T. Suzuki, H. Sasabe and C. Adachi Photophysics of Alq3 with Various Aggregated Morphologies 4th Chitose International Forum on Photonics Science & Technology, CIST, 2003.12.3-4
- K. Muneuchi, Y. Kawamura, M. Torii, M. Sasaki, H. Sasabe and C. Adachi
 3,6-Diarylcarbazole Derivatives as an Efficient Host Material in Organic Electrophosphorescent Diodes
 4th Chitose International Forum on Photonics Science & Technology, CIST, 2003.12.3-4
- N. Ando, Y. Kawamura, J. J. Brown, H. Sasabe and C. Adachi White Electrophosphorescent Devices having Multi-Phosphors Doped Layers 4th Chitose International Forum on Photonics Science & Technology, CIST, 2003.12.3-4
- D. Kubota and C. Adachi Observation of Memory Effect in an Organic Double-Layer FET Using a Perylene Derivative Under Light Irradiation 4th Chitose International Forum on Photonics Science & Technology, CIST, 2003.12.3-4
- S. Furusake, S. Maruyama, H. Sasabe and C. Adachi Photoluminescence Property of Soluble Tris (8-quinolinolate) aluminum-derived Dendrimers 5th Chitose International Forum on Photonics Science & Technology, CIST, 2004.10.19-20
- K. Goushi, Y. Kawamura, J. Brooks, J. J. Brown, H. Sasabe and C. Adachi Temperature Dependence of Phosphorescence Decay Characteristics of Ir(ppy)3 in a Solid Matrix
 5th Chitose International Forum on Photonics Science & Technology, CIST, 2004.10.19-20
- N. Imada, Y. Kawamura, J. Brooks, J. J. Brown, H. Sasabe and C. Adachi Photoluminescence characteristics of novel blue and red phosphorescence materials 5th Chitose International Forum on Photonics Science & Technology, CIST, 2004.10.19-20
- N. Takahashi, K. Goushi, Y. Kawamura, T. Suzuki, H. Sasabe and C. Adachi Exciton decay processes of Alq3 in different morphologies 5th Chitose International Forum on Photonics Science & Technology, CIST, 2004.10.19-20
- 20 T. Oyamada, H. Sasabe and C. Adachi Correlation between Photoluminescence Quenching by Electrical Field and Electroluminescence Efficiency in α-NPD/Alq3 Devices 5th Chitose International Forum on Photonics Science & Technology, CIST, 2004.10.19-20
- A. Endo, T. Oyamada, Y. Kawamura, J. Brooks, J. J. Brown, H. Sasabe and C. Adachi High-Efficiency Phosphorescence OLEDs with Cyclic SIloxane Compounds as a Host 5th Chitose International Forum on Photonics Science & Technology, CIST, 2004.10.19-20
- K. Hirata, T. Oyamada, H. Sasabe and C. Adachi Conductivity and OLED Characteristics of the Four Bases Comprising DNA 5th Chitose International Forum on Photonics Science & Technology, CIST, 2004.10.19-20
- 23. H. Inomata, K. Goushi, T. Masuko, A. Kimura, T. Konno, Y. Nakamura, T. Imai, H. Sasabe, J. J. Brown and C. Adachi

OLED Characteristics and Cariier Transport Properties of the Aryl Heterocycle Derivatives 5th Chitose International Forum on Photonics Science & Technology, CIST, 2004.10.19-20

- M. Yoshida, T. Tsuchida, T. Kurata, M. Ikeda, H. Sasabe and C. Adachi Hole Injection Mechanism of Dixanthene Derivative in OLED 5th Chitose International Forum on Photonics Science & Technology, CIST, 2004.10.19-20
- Y. Yamamoto, T. Oyamada, H. Sasabe and C. Adachi Electrical Characteristics of a Static Induction Transistor with a PEDOT Gate Electrode 5th Chitose International Forum on Photonics Science & Technology, CIST, 2004.10.19-20
- H. Yamamoto, T. Oyamada, S. Aoshima, H. Sasabe and C. Adachi Low damage ITO Formation in Organic LEDs using a Conical Type Sputtering Module 5th Chitose International Forum on Photonics Science & Technology, CIST, 2004.10.19-20
- H. Uchiuzou, T. Oyamada, K. Matsushige, H. Sasabe and C. Adachi Ambipolar Characteristics of the Co-deposited Film of Low-molecular Materials and the Realization of Light-emitting Transistors 5th Chitose International Forum on Photonics Science & Technology, CIST, 2004.10.19-20
- H. Nakanotani, T. Oyamada, H. Sasabe and C. Adachi Realization of High Current Density and Control of Exciton Annihilations under Pulse Exciton in OLED 5th Chitose International Forum on Photonics Science & Technology, CIST, 2004.10.19-20
- H. Kasajima, H. Inomata, H. Yoshizaki, H. Sasabe and C. Adachi Organic Electrophosphorescence Diodes with N, N'-bis(arylcarbazole) Derivatives as a Host Material
 5th Chitose International Forum on Photonics Science & Technology, CIST, 2004.10.19-20
- M. Yoshida, H. Sasabe and C. Adachi Peculiar Thickness Dependences of a CuPc Hole Injection Layer in OLED The Fifth International Conference on Electroluminescence of Molecular Materials and Related Phenomena (ICEL-5), Phoenix, 2005.1.17-21
- 31. H. Yamamoto, H. Nakanotani, H. Kasajima, W. Yokoyama, H. Sasabe and C. Adachi Anomalous High Density Carrier Injection and Transport over 10,000 A/cm2 into Organic Thin Films and the Conduction Mechanism The Fifth International Conference on Electroluminescence of Molecular Materials and Related Phenomena (ICEL-5), Phoenix, 2005.1.17-21
- 32. H. Yamamoto, T. Oyamada, S. Aoshima, W. Hale, H. Sasabe and C. Adachi Low Damage ITO Formation on an Organic Layer Using a Conical Type Sputtering Module and the High Performance Transparent OLEDs The Fifth International Conference on Electroluminescence of Molecular Materials and Related Phenomena (ICEL-5), Phoenix, 2005.1.17-21
- 33. H. Yamamoto, T. Oyamada, C. Adachi, S. Aoshima, W. Hale and H. Sasabe Low-damage ITO formation using a unique cylindrical sputtering module and high-performance transparent organic light-emitting diode Materials Research Society (MRS), Boston, 2005.11.27-12.2
- A. Endo, J. Brooks, M. E. Thompson, J. J. Brown, H. Sasabe and C. Adachi Photophysical properties of Ir carbene complexes having blue phosphorescence Materials Research Society (MRS), Boston, 2005.11.27-12.2

- N. Takahashi, K. Goushi, J. Brooks, J. J. Brown, H. Sasabe and C. Adachi Photoluminescence characteristics and energy decay processes of Alq3 in various host layers Materials Research Society (MRS), Boston, 2005.11.27-12.2
- A. Takahashi, A. Endo and C. Adachi Development of Novel Electron–transporting Carbazolylphenylquinolines for Phosphorescent Organic Light Emitting Diodes 6th Chitose International Forum on Photonics Science & Technology, CIST, 2005.12.9-10
- Y. Terao, H. Sasabe and C. Adachi Correlation between hole mobility and short circuit current in organic solar cells 6th Chitose International Forum on Photonics Science & Technology, CIST, 2005.12.9-10
- L. Fenenko and C. Adachi Control of OLED characteristics by heat treatment of ITO and CuPc hole injection layers 6th Chitose International Forum on Photonics Science & Technology, CIST, 2005.12.9-10
- T. Matsushima, H. Sasabe and C. Adachi Realization of Extremely High Current Density in Organic Thin Films 6th Chitose International Forum on Photonics Science & Technology, CIST, 2005.12.9-10
- K. Goushi, H. Sasabe and C. Adachi The mechanism of decreasing driving voltage by inserting a CuPc layer as a hole injection layer 6th Chitose International Forum on Photonics Science & Technology, CIST, 2005.12.9-10
- N. Takahashi, K. Goushi, J. Brooks, J. J. Brown, H. Sasabe and C. Adachi Photoluminescence characteristics and energy decay processes of Alq3 in various host layers 6th Chitose International Forum on Photonics Science & Technology, CIST, 2005.12.9-10
- 42. A. Endo, J. Brooks, J. J. Brown, H. Sasabe and C. Adachi Photophysical properties and OELD characteristics of Ir carbene complexes having high efficiency deep blue phosphorescence 6th Chitose International Forum on Photonics Science & Technology, CIST, 2005.12.9-10
- H. Nakanotani, H. Sasabe and C. Adachi Low threshold lasing oscillation under optical pumping from an OLED structure 6th Chitose International Forum on Photonics Science & Technology, CIST, 2005.12.9-10
- N. Matsumoto, M. Nishiyama, M. Takahashi, C. Adachi Exciplex Formation between Alq3 and Triarylamine Derivatives and Their Photoluminescence Characteristics The Fourth International Conference on Molecular Electronics and Bioelectronics (M&BE4), Tokyo, 2007.3.14-16
- 45. L. Fenenko, G. Mao, A. Orita, J. Otera, C. Adachi High Efficiency Fluorescence Materials having Phenylene Vinylene and Ethynylene Units and Their Application for OLED The Fourth International Conference on Molecular Electronics and Bioelectronics (M&BE4), Tokyo, 2007.3.14-16
- K.S. Son, M.Yahiro, T.Imai, H.Yoshizaki, and C.Adachi Relaxation of Roll-off Characteristics in Organic Electrophorescence Diodes IMID 2007, Korea, 2007.8.27-31

(4)特許出願

①国内出願(14件)

- 発明の名称:有機半導体レーザー装置および有機エレクトロルミネッセンス装置 発明者:山本英利、笠嶋大樹、横山亘、雀部博之、安達千波矢、小山田崇人 出願人:JST 出願日:平成16年8月20日 出願番号:特願2004-241145
- 発明の名称:有機半導体レーザー装置 発明者:山本英利、小山田崇人、雀部博之、安達千波矢、笠嶋大樹、横山亘 出願人:JST 出願日:平成16年8月20日 出願番号:特願2004-241146
- 発明の名称:有機エレクトロルミネッセンス素子 発明者:遠藤礼隆、安達千波矢 出願人:JST 出願日:平成16年8月30日 出願番号:特願2004-250573
- 4. 発明の名称:有機エレクトロルミネッセンス素子
 発明者:遠藤礼隆、安達千波矢、辻康之、徳永信、大洞康嗣、岩澤哲郎
 出願人:JST、北海道大学
 出願日:平成16年9月22日
 出願番号: 特願 2004-276010
- 5 発明の名称:有機半導体レーザー装置
 発明者:安達千波矢、小山田崇人、雀部博之
 出願人:保土谷化学工業㈱
 出願日:平成16年9月27日
 出願番号:特願2004-280431
- 6 .発明の名称:新規カルバゾール誘導体並びにそれを用いた有機エレクトロルミネ ッセンス素子および有機半導体レーザー素子
 発明者:大北雅一、安達千波矢、遠藤礼隆、中野谷一
 出願人:JST
 出願日:平成17年3月24日
 出願番号:特願 2005-85456
- 発明の名称:有機色素固体レーザー 発明者:中野谷一、安達千波矢 出願人:JST 出願日:平成17年9月6日 出願番号:特願2005-258587
- 発明の名称:カルバゾール誘導体及びこれを用いた有機固体レーザー材料 発明者:中野谷一、安達千波矢、八尋正幸、秋山誠治、古野奉未 出願人:九州大学、三菱化学㈱、ローム㈱

出願日:平成18年9月25日 出願番号:特願2006-259147

- 9. 発明の名称:カルバゾール誘導体及びこれを用いた有機固体レーザー材料 発明者:中野谷一、安達千波矢、八尋正幸、秋山誠治、古野奉未 出願人:九州大学、三菱化学㈱、ローム㈱ 出願日:平成18年10月12日 出願番号:特願 2006-278910
- 発明の名称:発光素子
 発明者:岩隈俊裕、松島敏則、安達千波矢
 出願人:出光興産㈱、九州大学
 出願日:平成18年10月31日
 出願番号:特願2006-295803
- 11. 発明の名称:ジフェニテルエテン誘導体およびこれを用いた有機固体レーザー材料
 発明者:中野谷一、安達千波矢、八尋正幸、秋山誠治、古野奉未
 出願人:九州大学、三菱化学㈱、ローム㈱
 出願日:平成18年12月28日
 出願番号:特願 2006-354379
- 12. 発明の名称:カルバゾール誘導体及びこれを用いた有機固体レーザー材料 発明者:中野谷一、安達千波矢、八尋正幸、秋山誠治 出願人:九州大学、三菱化学㈱、ローム㈱ 出願日:平成19年2月8日 出願番号:特願2007-029436
- 13. 発明の名称:有機エレクトロルミネッセンス素子および有機レーザーダイオード 発明者:横山大輔、中野谷一、八尋正幸、安達千波矢、守分政人、大西大 出願人:九州大学、ローム㈱ 出願日:平成19年8月17日 出願番号:特願 2007-212863
- 14. 発明の名称:置換されたフェナントレン環構造を有する化合物および有機エレクトロルミネッセンス素子
 発明者:シャウエン ホン、安達千波矢、横山紀昌、長岡誠、泉佐和
 出願人:九州大学、保土谷化学工業㈱
 出願日:平成 19 年 8 月 27 日
 出願番号:特願 2007-219310
- ② 海外出願 (3件)
- 発明の名称:有機半導体レーザー装置および有機エレクトロルミネッセンス装置 発明者:山本英利、笠嶋大樹、横山亘、雀部博之、安達千波矢、小山田崇人 出願人:JST 出願日:平成17年2月22日 出願番号:PCT/JP2005/003246 / 特願 2004-241145 平成16年8月20日
- 2. 発明の名称: 有機エレクトロルミネッセンス素子

発明者:遠藤礼隆、安達千波矢、辻康之、徳永信、大洞康嗣、岩澤哲郎 出願人:JST、北海道大学 出願日:平成17年9月22日 出願番号: PCT/JP2005/017531 / 特願 2004-276010 平成16年9月22日

 3. 発明の名称: 有機色素固体レーザー 発明者:中野谷一、安達千波矢 出願人: JST 出願日:平成18年9月5日 出願番号: PCT/JP2006/317582 / 特願2005-258587 平成17年9月6日

(5)受賞等

① 受賞

- 第1回 応用物理学会 有機分子・バイオエレクトロニクス分科会 論文賞 "有機 EL に関する研究" (2004)
 C.Adachi, S.Tokito, T.Tsutsui and S.Saito, "Electroluminescence in Organic Films with Three-Layer Structure" Jpn.J.Appl.Phys., 27(2) (1988) L269-L271
- Nano-tech 2004 国際ナノテクノロジー総合展・技術会議 ナノテック大賞 IT・エレクトロニクス部門受賞 千歳科学技術大学 安達研究室 (2004.3.17-19)
- 3. 第16回(2004年春季)応用物理学会 講演奨励賞受賞 河村祐一郎
 "CBP 共蒸着膜中における Ir 錯体の発光効率と分子間相互作用" (2004.9.1)
- 4. 第 20 回(2006 年春季)応用物理学会 講演奨励賞受賞 松島敏則, 雀部博之, 安達千波矢
 "1µ m² 以下の素子面積を有する CuPc 薄膜素子のキャリア伝導機構"
- 5. 平成 19 年度科学技術分野文部科学大臣表彰 科学技術賞受賞 安達千波矢
- 6. Outstanding Poster Paper Award, 7th International Meeting on Information Display (IMID2007) The Korea Information Display Society Kyung Soo Son, Masayuki Yahiro, Toshiro Imai, Hiroki Yoshizaki, and Chihaya Adachi "Relaxation of Roll-off Characteristics in Organic Electrophosphorescence diodes"

年月日	名称	場所	参加人数	概要	
2003. 1. 10	研究打合わせ	千歳科学 技術大学	4名	ダメージレススパッタ装 置の設計打合わせ	
2003. 3. 7	研究打合わせ	千歳科学 技術大学	5名	アルカリ金属を用いた透 明デバイス構築の ための打合わせ	
2003. 12. 3- 4	第4回千歳国際フォー ラム (CIF4)	千歳科学 技術大学	70名	Nanotechnology & Organic Semiconductor	
2003. 12. 5	CIF4サテライトシン ポジウム	ホテル ニドム(苫 小牧)	50名	Device Physics of Organic Semiconductors	
2005. 12. 9 -10	6 th Chitose International Forum on Photonics Science	ホテル 日航千歳	70 名	有機レーザー,有機EL, 有機トランジスターなど 有機半導体に関する 国際シンポジウムを開催	

7 研究期間中の主な活動(ワークショップ・シンポジウム等)

8 研究成果の展開

他の研究事業への展開

産学共同シーズイノベーション化事業顕在化ステージをH18年度に実施した。今後、 実用化を目指した予算の獲得に向けて産学連携を強化する予定である。

(2)実用化に向けた展開

有機半導体レーザーの実用化を目指して、(株)ローム、(株)三菱化学科学技術研究センターと 共同研究を開始した。三菱化学では、低閾値化を目指した有機レーザー材料の合成を担当し、ロ ームでは微細加工技術による素子化の検討を行っている。今後、電機、化学メーカーとの共同研 究を強化し、有機半導体レーザーの実用化を目指す。

9 他チーム、他領域との活動とその効果

(1)領域内の活動とその効果

DFB 等の光共振器構造の作成などの微細加工を東工大のナノ支援の援助を受けて実施した。

(2) 領域横断的活動とその効果

北海道大学触媒化学研究センターの辻康之先生の研究グループと横断領域シンポジウム で交流を図り、辻先生の開発された触媒活性物質を有機半導体材料として本プロジェクトで活 用した。本研究成果は、特許出願に至った。

また、北海道大学電子科学研究所ナノテクセンターの下村教授の援助を受け、微細有機デバイスの構築を行った。

10 研究成果の今後の貢献について

(1)科学技術の進歩が期待される成果

本研究では、ビススチリルベンゼン(BSB)系材料が固体薄膜において発光量子収率~100%に達 することを明らかにした。これらの新規材料は、優れた有機半導体特性を兼ね備えていることより、 今後、有機半導体レーザーの活性層として標準材料として使われていくと期待される。また、 OLED 等への電子デバイスへの応用のみならず、色素レーザーや二光子吸収材料としての用途も 期待される。さらに、今後、リン光性材料のレーザー作用などを検討し、より一層の低閾値材料の 開発を進めていきたい。有機材料は、分子構造を適切に選択することによって極めて高い発光効 率を実現できることから、今後、発光デバイス用材料として優れた性能を提供すると期待される。

有機薄膜への高電流密度の注入に関しては、単層薄膜構造において MA/cm²の電流領域を利用可能であることを明らかにした。また、有機積層構造においても 1KA/cm²を超える電流注入を実現した。これらの研究成果は、有機半導体レーザーのみならず、大電流密度を用いる新規なデバイスの構築が可能であることを示唆している。

また、高電流密度下の励起子 annihilation の解析から、電流注入有機半導体デバイス中では、 100mA/cm²を超える電流領域から singlet-singlet, singlet-polaron annihilation、さらには、熱による 励起子の解離が活発に生じていることが示唆された。今後、より高純度材料の検討、単結晶材料 への展開に加えて、FET 構造による電流励起構造を用いることによりヘテロ界面を回避することが 可能であり、励起子失活の抑制が期待できる。さらに、様々なデバイス構造の検討によって各種 annihilation 過程の解明を進むことを期待する。

有機多層薄膜構造において cutoff モードを用いた光増幅現象を見出した。今後、光増幅メカニズムの解明を進めると共に、FET 構造など新たなデバイス構造においても cutoff 現象によるレーザー発振の可能性が期待される。

(2) 社会・経済の発展が期待される成果

過去5年間において、市場では OLED の商品化が進み、学会においても有機トランジスタ、有機太陽電池、有機メモリー等の新規有機半導体デバイスに関する研究開発が大きく進展した。そ

の中でも有機半導体レーザーは、OLEDの直接的な応用デバイスであり、その実現が大きく期待されている。本プロジェクトでは、cutoffモードを利用した光増幅現象を確認し、有機半導体レーザーの可能性を大きく切り開いた。有機半導体レーザーは、超小型、集積化が容易であり、低温作製プロセスが可能なこと、活性層材料を変えることによって可視域から赤外域までの発振が可能であるなど、従来の無機半導体に比べて大きな利点を有する。小型プロジェクターなどのディスプレー用の光源や、プラスチックをベースとした電子回路における光インターコネクション用光源などの応用分野の開拓が期待される。今後、OLEDの商品化技術を基礎に、有機半導体レーザーの商品化を目指した実用化研究が進展することを期待する。そのためには、有機デバイス独自のプロセス開発も必要とされる。また、有機半導体デバイスのデバイス物理は、未解決の課題が多く、有機半導体デバイスの商品化を進める上でも大切である。

11 結び

本研究では、有機半導体レーザーの実現とそれに係わる有機半導体のデバイス物理の解明に 取り組んだ。有機レーザー材料開発においては、新規ビススチリルベンゼン誘導体に取り組み、こ れまで報告されている有機レーザー材料の中で最も低い ASE 閾値を実現したことは大きな研究成 果である。今後、この材料系は、有機半導体特性にも優れた特性を有することから、有機半導体レ ーザーの中心的な材料として使われていくと期待される。また、有機薄膜の大電流密度注入に関 しては、これまで報告されている最高値である1MA/cm²を超える電流注入に成功した。今後、大電 流密度を利用した新たな電子デバイスへの展開が期待される。さらに光導波路において cutoff 現 象を用い、電流励起下において光増幅現象を確認し、有機半導体レーザーの可能性を大きく切り 開いた。これらの研究成果は、有機半導体デバイスの進歩に大きな貢献を果たしたと考える。

また、本プロジェクトにおいて、多くの新たな研究目標が見つかった。特に、FET 構造において、 発光デバイスを構築できたことは今後の有機デバイスの新たな可能性を切り開いた。横型に電極

を配置した発光デバイスは、光共振器構造を 組み込み易いなどの多くの利点を有し、今後、 発光デバイスとして、幅広い展開が期待できる。 また、本研究では、cutoffに基づく電流励起下 での光増幅現象を見出したが、従来型の高励 起子密度の形成と反転分布の形成によるレー ザー発振の可能性に関しては、材料の高純 度化、結晶性の向上やデバイス構造の最適 化によって引き続き検討を進める必要がある。

また、本研究では、有機固体薄膜における 積分球による絶対量子収率の計測、時間分 解発光スペクトルの測定、励起吸収スペクトル

電気物性·光学物性計測装置

薄膜中における新しい計測手法として注目を集めた。

5年前に米国から戻り、千歳科学技術大学にてゼロからのスタートであったが、千歳科学技術大 学、九州大学のバックアップや様々な方々のサポートに加え、CRESTの大きな支えによって、研究 が大きく進展したことに感謝している。幸い優秀なポスドク、大学院生に恵まれ、研究も順調に推移 した。当該分野の研究開発の難しさは、有機化学、半導体電子工学、薄膜光物性、光学、プロセ ス工学などのまさに学際領域の研究であり、これらの研究者を上手に組織化することの重要性を肌 で感じた。この点に関しては、研究の初期段階においては、必ずしも各分野の専門家を十分に配 置することが出来ず、今後のプロジェクトにおいては、海外の研究者も含め、バランスの取れた研 究者の配置を検討して行きたい。有機エレクトロニクスは、将来のバイオエレクトロニクスの橋渡しを する重要な研究分野であり、当面は、実用化可能なデバイスの実現を進めると共に、早い時期に、

世界に先駆けて、より一層バイオ機能を意 識した有機エレクトロニクスの研究分野の 創成も大切であると考える。

最後に、本プロジェクトの遂行にあた り、研究総括の榊裕之裕之先生、領域ア ドバイザーの長谷川英機先生、三村高志 先生、平山祥郎先生、小林功郎先生、 井筒雅之先生、岩井洋先生、千歳科学技 術大学学長の雀部博之先生、技術参事の 村井二三夫様、事務参事の齋藤敦様、チ ーム事務員の齋藤正美さん、原田絵理子 さん、そして、研究室のメンバーに深く 感謝致します。

