筑波大学先端学際領域研究センター 客員教授

藤井 義明

「 内分泌かく乱物質の生体毒性発現の メカニズムとモニター系の開発 」

研究期間:平成11年1月1日~平成15年12月31日

1. 研究実施の概要

生体にダイオキシン(TCDD)やベンツピレンなどのような化合物が取り込まれると様々な生体応答反応が引きおこされる。すなわち、薬物代謝酵素の誘導、発癌、内分泌撹乱、奇型の誘導、免疫不全、体重消耗などの生体反応である。我々は、TCDDや3メチルコラントレンによる薬物代謝酵素の誘導メカニズム解明の研究から、誘導現象を司る細胞内因子、アリルハイドロカーボン受容体(AhR)を同定し、そのcDNAクローニングからAhRの構造を決定した。このような研究を基盤にして、これまでマウスを用いた遺伝学的な研究から予想されていた、上述のTCDDなどの化合物の示す多岐にわたる生体反応にAhRがどのように、またどの程度関与しているかを、主として分子生物学的方法と発生工学的手法を用いて解明すること、及び内分泌撹乱物質に対し感受性の高いモニターマウスを作製することを目的に研究を計画した。研究体制は、構想の項に述べたように若干の変動はあったが6班の編成で行った。成果の概要は次の通りである。

AhRは正常な状態では細胞質にHSP90, XAP2, P23の複合体として存在しているがTCDDなどの誘導剤が細胞中に取り込まれると、複合体にあるAhRはこれと結合し、核に移行する。核内でArntが存在するとAhRはHSP90複合体から解離してArntとヘテロ2量体を形成し、標的遺伝子のプロモーター領域にあるXRE配列に結合して標的遺伝子の遺伝子発現を活性化する。(図1.)

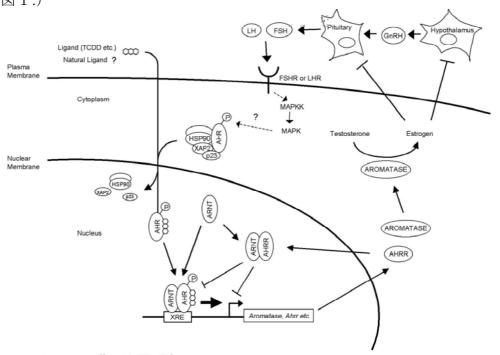


図1. AhRの作用と問題点

しかし、CYP1A2やエストロゲンの標的遺伝子のcfosやVEGFもTCDDや3MC によってその発現が活性化されるが、これら遺伝子のプロモーター領域に はXRE配列がない。DNAトランスフェクション法によってその転写活性化 メカニズムを検討した結果, CYP1A2遺伝子のプロモーター領域には新しい 誘導的エンハンサー配列CATGN,CTTGが存在し、この配列にLBP-1転写因 子が結合し、TCDDなどの結合したAhR/Arntへテロ2量体はこのLBP-1に結 合してCYP1A2遺伝子の発現を活性化することが分かった。また, ERE (Es trogen Response Element) によって駆動されるレポーター遺伝子は, ER(エ ストロジェン受容体) の存在下に3MCの結合したAhR/Arntへテロ2量体が、 エストロジェンの結合していないERに結合して標的遺伝子を活性化する ことが示された。2つの例はいずれもAhR/Arntは直接にDNAに結合するので はなく, DNA結合性の転写因子に結合してコアクチベーター的に働いて, 遺伝子発現を活性化するAhRの新しい転写活性化メカニズムである。マウ ス個体を用いた実験でも3MCはAhRを介して子宮の増量に関してエストロ ジェン様の作用を示すことが明らかになった。これは、子宮内膜症のメカ ニズムを示すものとして注目される。一方では、エストロジェンと結合し たERによる遺伝子発現には、3MCによって活性化されたAhRは、拮抗的に 働くことが分かった。最近ではAhRの拮抗作用はERの分解によることが示 されている。AhRの働きをさらに個体レベルで検討するために、相同組み AhR([†]/)♂マウスのかけ合わせで、メンデルの法則に基づいて正常に生まれ てきて, 見かけ上, 生育も正常である。肝臓の発達は生後一週間では, や や遅滞が見られるが、それ以後は、野性型に追いつく。また、肝臓の血管 系の発達に異常が報告されている。AhRは、マウスを用いた遺伝学的解析 からTCDDによる奇型 (口蓋裂と水腎症)の誘発と化学発癌物質による癌の 発症に関与していることが示唆されていた。我々は、AhR(/)マウス同志の かけ合わせで得られた妊娠マウス12.5日目に40μg/kgのTCDDを経口的に投 与し、18.5日に帝王切開により胎児を取り出し、水腎症を調べた結果、Ah $\mathbf{R}(^{\dagger}/)$ 及び $\mathbf{A}\mathbf{h}\mathbf{R}(^{\dagger}/)$ マウスはすべてに水腎症の発症が認められるのに対して、 AhR(/)マウスでは水腎症の発症は、全く観察されないことが分かった。一 方口蓋裂はAhR([†]/)マウスでは100%に口蓋裂が認められ,AhR([†]/)マウスで は口蓋裂の発症は部分的で、その程度も個体差が認めれらhaploinsufficienc yがあることが分かったが、AhR(/)マウスでは口蓋裂は全く認められなか った。また,ベンツピレンによるヒフ癌の形成でもAhR([†]/₂)またはAhR([†]/₂)

マウスでは、ヒフへの塗布あるいは、皮下注射によって17~27週目にすべ てのマウスに癌の発症が観察されたが, AhR(/)マウスでは, 癌の発症は全 く見られないことが示された。この他に, TCDD投与による胸腺の縮退は, AhR依存的に起こることを明らかにすることができたし、他の研究グルー プによってTCDDによる肝毒性の発現も, AhR依存的に起こることが証明さ れた。また,これらの外来異物の毒性発現に対する感受性の動物種差と系 統差の一つの重要な要因がTCDDなどの化合物のAhRに対する親和性の違 いであることが、DNAトランスフェクション法によるレポーター遺伝子の 発現量の測定実験と、ヒトのAhR遺伝子をマウスのAhR遺伝子座に入れ換 えたAhRヒト化マウスを作製した研究によって明らかになった。TCDDに対 して感受性の高いC57BL/6マウスと不感受性のDBA/2マウスでは、C57BL/6 のAhRの375番目のAlaが、DBA/2ではValに変わっており、終止コドンの変 異のためにDBA/2のAhRではC末端に43アミノ酸の延長がみられる。このた めにDBA/2のAhRは、TCDDに対する親和性が低下し、解離定数で6倍大き くなっている。ヒトのAhRもDBA/2タイプのアミノ酸変異があって, TCDD に対する解離定数は、やはり6倍位大きくなっている。このヒトのAhRのc DNAをC57BL/6のAhRの遺伝子座に置換してヒト化AhRのマウスを作り、T CDDや3MCに対して薬物代謝酵素の誘導、口蓋裂や水腎症の誘発がどの様 に変わるかを調べた。その結果、薬物代謝酵素に対するヒト化AhRマウス の感受性はDBA/2マウス,あるいはそれ以下になっていることが明らかに なった。また, TCDDに対する奇型の誘発に対する感受性もDBA/2マウスと 同程度か、それ以下に低下していることが分った。このAhRのヒト化マウ スは今後、外来異物に対するヒトの感受性を検討するモニターマウスとし て使用できる可能性を示している。

AhR遺伝子は哺乳類のみでなく鳥類,魚類から線虫,ハエまで保存されている。この生物種間における高い保存性は、AhRが外来異物のセンサーとして働くのみでなく、生物本来の重要な生理的機能を果たしているように思われる。AhR(/)マウスをよく観察すると、AhR(/)雌マウスは初回の妊娠は成立するが、二回目以降の妊娠が起こり難く、また、AhR(/)雌マウスをC53BL/6に戻し交配を8回以上繰り返すことによって遺伝的背景をC57BL/6に純化すると不妊に近くなる。その原因を追求した結果、AhR(/)の不妊の原因は、生殖サイクルの不順、PMSGとhCG投与による強制排卵による排卵数の低下、黄体形成不全であることが明らかになった。この表現型は、アロマターゼ遺伝子の欠失マウスとよく似ているので、卵巣におけるE,の

濃度を測定した結果、その濃度が顕著に減少していることが分かり、AhR がアロマターゼ遺伝子の発現制御に働いている可能性が示された。実際にマウスとヒトのアロマターゼ遺伝子を単離してその構造を調べると、プロモーター領域にXRE配列が存在し、AhRが転写因子としてこのXREに結合して働くことがChIP法及びDNAトランスフェクション法によって確かめられた。この結果は、TCDDや3MCがAhRを介してERα及びERβとの相互作用を通してエストロジェン作用を示すのみでなく、アロマターゼ遺伝子の直接的な活性化によるエストロジェンの生産を通して、エストロジェン作用を示す経路があることが証明された。従って、これまでにDESなどの化合物のようにERに直接結合してエストロジェン作用を示すメカニズムが知られていたが、外来異物によるエストロジェン作用を示すメカニズムは、本研究によって見出されたメカニズムと合わせて3つのメカニズムがあることが明らかになった。

最近では、AhRが免疫T細胞分化にも関係していることが我々も含めていくつかの研究室によって明らかにされて来ている。AhRの本来的機能の解明が進展すれば、この機能をモジュレートするものとしての内分泌かく乱物質の作用が明確に理解され、科学的根拠に基づいた的確な対策が講じられるようになるであろう。

2. 研究構想

マウスを用いた遺伝学的研究によってTCDDや3MCなどの示す生体毒の多くはAhRが関与していることが示唆されていたことや、我々のこれまでの研究の進展上からも研究の焦点を、AhRにしぼることが最もこの分野に貢献できると考えられたので、内分泌撹乱物質の作用メカニズムの研究を、AhRに焦点をあてて行うことにした。シトクロムP450の3MCによる誘導メカニズムの研究から遺伝子上の誘導的エンハンサー配列、XRE配列を決定し、さらにそのXRE配列に誘導時に結合する因子に、誘導剤であるTCDDが結合していることを見出し、XRE結合因子がAhR(arylhydrocarbon受容体)であることを証明した。その研究の発展として、XRE配列に結合する因子のクローニングを行い、そのcDNAの単離、遺伝子の構造解析までは、順調に世界に先駆けて研究を進めることができた。しかし、遺伝子欠失マウスの作製は残念ながら世界的に2つの研究室の後塵を拝する結果になった。AhR欠失マウスの作製は研究を進めて行く上でどうしても必要であったので、その作製を行い、それを用いて、AhRがTCDDによる奇型の誘発に関与して

いることを証明した。本研究が構想されたのはこの時であった。研究は,1) AhR欠失マウスと分子生物学的研究を用いたAhRの機能の研究(藤井グルー プ), 2) AhRの機能について発生工学的手法を用いた研究, 内分泌撹乱物 質のモニターマウスの作製(山本,本橋グループ),3)AhRによって誘導 されるP450の代謝活性と標的遺伝子の研究(鎌滝グループ),4)TCDDに よる胸腺縮退及び免疫不全におけるAhRの役割(菅野グループ),5)TCD Dによる奇型誘導におけるAhRの役割(山下グループ), 6)核内受容体とA hRの相互作用による内分泌撹乱作用(梅園グループ,平成11年4月逝去によ り、東大分生研武山グループに変更して藤井グループに編入)の6研究グル ープで研究はスタートした。しかし、梅園グループがなくなり、5グループ になったが、2002年に藤井が筑波大学に移転したのに伴い、研究の一部を 東北大学で続けるために、東北大学に十川グループを作り、最終的に再び6 グループの編成になった。研究班は,年一回内分泌撹乱物質事務所にて, 各々の研究グループの年間研究目標と成果の報告を行い、討論して相互の 研究の連携を密にした。研究は、鎌滝グループがTCDDによって誘導される P450によってステロイドホルモン, 甲状腺ホルモン, プロスタグランジン などの代謝が、どのような影響をうけるかを検討する事及び、TCDD投与に よってどのような遺伝子の発現が変化をうけるかを明らかにすること。藤 井、十川グループは、AhRの転写因子としての作用メカニズムを明らかに すること及び、AhR欠失マウスを用いてAhRの機能解析をすること、そして、 山下グループと共同してTCDDによる奇型の誘発におけるAhRの機能を明 らかにすること。菅野グループは、TCDDによる胸腺の縮退と免疫系に対す る作用にAhRがどのように関与しているかを明らかにすること。山本、本 橋グループは、AhR欠失マウス、彼等の研究して来た薬物代謝第2相酵素の 発現をコントロールするNrf2の欠失マウス及び、AhRR欠失マウスを用いて 発生工学的に内分泌撹乱物質の検出に有利なモニターマウスを作製するこ と、等を目的に進められた。各々のグループの具体的成果は、研究成果に 譲るが,研究構想を立てた時に予想していなかった新しい研究の展開は次 の通りである。1) AhRの活性を抑える因子AhRR (AhR repressor)が発見さ れ,TCDDなどの誘導剤によってAhR/Arntへテロ2量体を介して誘導される ことが見出されたこと、2) AhRがコアクチベータ的に働いて、E,の結合し ていないERαあるいはERβを介してエストロジェンの標的遺伝子の発現を 活性化させること、3) 生殖サイクルにAhRがアロマターゼ遺伝子の制御を 介して関与しているメカニズムが明らかにされたこと。これらの研究の発

展によって新たにAhRの作用をコントロールするAhRRの役割とTCDDなどのAhRのリガンドによる内分泌撹乱作用、特に、エストロジェン作用を説明する分子基盤を研究する展望が開かれた。

3. 研究成果

- 3. 1 "AhRとAhRRの機能調節 (藤井グループ)"
- (1)研究内容及び成果 (藤井)

【AhRの外来異物による化学発癌における役割】

ベンツピレンや3MCなどの多環性発癌物質は、それ自身は癌原性を示さ ず,細胞内に取り込まれてチトクロムP4501A1, 1B1 (CYP1A1, 1B1)などの 酵素によって酸化的代謝をうけて癌原性を示すようになる。CYP1A1や1B1 はAhRによってその遺伝子発現がコントロールされているので、AhR欠失 マウスと野性型マウスを用いてベンツピレンの投与によってヒフ癌の発生 がどのように変化するのかを検討した。生後12週目の雌マウスの皮下にべ ンツピレンを2mg,一週間の間隔を置いて2回投与するとAhR(*/」)あるいは、 AhR([†]/)のマウスのヒフに5週目から癌が発症し、18週目にはすべてのマウ スに癌が発生する。しかし、AhR(/)マウスは、すべてに癌の発症は認めら れないことが明らかになった。これはヒフに塗布する場合も同様の結果で あった。ベンツピレンを与えることでヒフ組織にAhR(†/,)やAhR(†/)マウス では,ベンツピレンを代謝的に活性化するCYP1A1, CYP1B1の発現が誘導 されるが、AhR(/)マウスでは、誘導されないことが分った。さらにDNA複 製時に, 誤った塩基を取り込み易い複数のfidelityの低いDNA polymeraseĸ があるが、この遺伝子発現もベンツピレンの結合によって活性化したAhR/ Arntへテロ2量体によって誘導されることが明らかになった。これによって 修飾をうけた塩基が校正されることなく変異としてDNAに取り込まれる可 能性が増すことになる。AhRは発癌物質ベンツピレンの代謝活性化に働くC YP1A1とCYP1B1の発現を誘導すると同時に、その活性化された発癌物質に よって修飾された塩基をDNAの変異として定着させるpolkを誘導すること によって発癌の可能性を高めていると考えられる。

【AhRの雌マウスの生殖に対する働き】

AhR(/)雌マウスは、生殖能力が弱く、初産はやや生まれて来る子の数が少なく、2産あるいは3産目は、妊娠しにくくなることが分った。また、AhR(/)雌マウスの遺伝的背景をC57BL/6に純化すると不妊に近くなる。その原因は、マウスでは4~5日周期でおこる生殖周期が著しく不順になり、PMSGとhCGを与えておこす強制排卵の排卵数の減少と黄体形成が不順であることが分った。この症状はアロマターゼ欠失マウスによく似ていたので、PMSGとhCGを与えて4時間後に卵巣で起こるコレステロールからプロゲス

テロンやエストロジェンの合成に関与している酵素系の発現を調べてみる とテストステロンからエストロジェンを合成するアロマターゼの発現がA hR(/)マウスでは, 顕著に減少していることが分った。さらに生殖周期でエ ストロジェンの卵巣に置ける濃度を測定すると、正常マウスに比較してAh R(/)マウスでは1/3以下に低下していることが認められた。さらにアロマタ ーゼ遺伝子のプロモーター領域には, ステロイドホルモン合成酵素遺伝子 によく見られるAd4配列のあることが分った。ヒトアロマターゼ遺伝子の 上流配列をルシフェラーゼ遺伝子に結合してレポーター遺伝子を作製し,2 93T細胞に導入して、その発現を見るとAhRとArntの発現ベクター存在下に 3MCを添加すると、レポーター遺伝子の発現は活性化され、さらに、Ad4B Pの発現ベクターを与えると、その発現は相乗的に増強することが認められ た。卵巣ではアロマターゼはGranulosa細胞に発現しているが、AhRも同様 にGranulosaに発現していることが免疫組織化学的方法によって確認された。 Granulosaにおいてアロマターゼ遺伝子の発現がAhRとAd4BPによってコン トロールされているかについてChromatin immunoprecipitation法によって 検討すると、AhRはアロマターゼ遺伝子のXRE配列に、Ad4BPはAd4配列に 結合していることが確認された。興味あることにAd4とXRE配列は遺伝子上 で離れて存在しているが、Ad4BP抗体で分離したクロマチン沈降物には、X RE配列が含まれており、逆にAhR抗体で分離したクロマチン沈降物にはAd 4配列が含まれていることが分った。このことは, Ad4配列に結合している Ad4BPとXRE配列に結合しているAhR/Arntへテロ2量体が相互作用してい ることを示している。実際にGST-pulldown法でその相互作用を検討すると, Ad4BPとAhRは結合することが示された。生殖サイクルに伴ってAhRがどの よに活性化されて核に移行しアロマターゼ遺伝子の活性化に働くのは、今 のところ分らない。生殖サイクルに伴ってAhRのリガンドが合成されてAh Rを活性化するのか、FSHなどのホルモンによるリン酸化カスケードによっ てAhRが活性化するのか今後に残された重要な問題である。マウスにDMB AなどのAhRのリガンドを投与するとアロマターゼ遺伝子の発現が活性化 されることは確認された。このことは、アロマターゼ遺伝子の発現がAhR を介して外来異物によって活性化されることを示している。もう一つの外 来異物による内分泌撹乱作用メカニズムである。また、AhR(/)雌マウスに エストロジェンを与えると雌マウスの排卵数は、部分的に回復することが 分った。このことは、AhR(//)マウスの不妊の原因の一つはアロマターゼ遺 伝子の発現低下であることを示している。

【AhRシグナル伝達系におけるAhRRの役割】

AhRに類似の因子があるかどうかAhRのcDNAをプローブにしてマウスのゲノムライブラリーをスクリーニングする過程で、この遺伝子クローンが得られた。この遺伝子クローンをプローブにしてマウスの小腸cDNAライブラリーよりcDNAを単離して、塩基配列を決定した結果、このcDNAは701アミノ酸をコードしており、N末端からPASAをコードする部分までは、AhRとアミノ酸配列がよく似ているが、それよりC末端側のアミノ酸配列は、類似性が殆どないことが分った。(図2.)

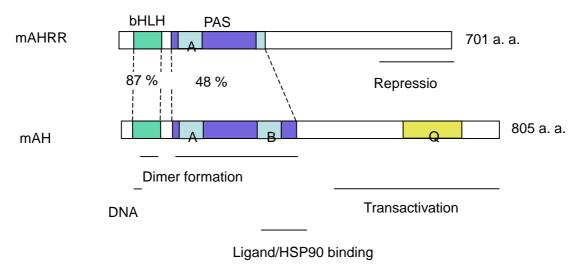


図2. AhRRとAhRの構造の比較

このcDNAのコードするタンパク質はAhRのパートナー分子であるArntとヘテロ2量体を形成し、XRE配列に結合することが示された。しかし、XRE配列によって駆動されるレポーター遺伝子の発現は、活性化しなかったが、このcDNAを発現ベクターに組み込んでコードするタンパク質を発現させるとAhR/Arntヘテロ2量体による遺伝子発現を強く抑制することが分った。この性質によって新しいcDNAによってコードされるタンパク質は、AhRR (AhR repressor)と命名された。この阻害のメカニズムは、AhRとArntの取り合いとAhR/Arntヘテロ2量体とAhRR/Arntヘテロ2量体のXREへの結合の拮抗によることが明らかになった。また、XRE配列に結合したAhR/ArntはHDAC活性によって転写を抑制することがHDACの阻害剤を用いた実験によって示された。また、AhRRの遺伝子をクローニングしてその構造を決めたところ、遺伝子プロモーター領域にGC-box配列とXRE配列が存在すること

が分った。さらにAhRR遺伝子の上流配列をルシフェラーゼ遺伝子に結合してレポーター遺伝子を作製し、293T細胞にトランスフェクトすると3MCによってレポーター遺伝子は活性化されることが分った。さらに生体の組織でもAhRRは3MCの投与によって、発現が誘導される。その誘導的発現は肺、心臓など比較的限られた組織に限られることが分って来た。またこの他にAhRの活性化によって卵巣とマクロファージにAhRRが誘導されることが見出された。これらの組織においてAhRRがどのような機能を担っているかは、現在のところ不明である。

今後このAhRR欠失マウスを用いて、AhRRの機能解析等を行う予定である。

(2)研究成果の今後期待される効果 (藤井)

AhRはTCDDなどの多環性芳香族化合物による異物代謝酵素シトクロムP 450の誘導機構の研究からそのcDNAが単離され、転写因子としての機能が 明らかにされて来た。さらに分子生物学的研究や発生工学的研究によって, 外来異物の示す催奇型性、発癌プロモーション作用、胸腺縮退による免疫 不全、内分泌撹乱作用などの多岐に渡る生物毒性の発現にもAhRが関与し ていることも明らかにされた。従って化学物質のAhRの結合性によって, その物質の生体作用がある程度予測することが可能である。AhRはこのよ に生体異物の生体毒発現の仲介因子として、生体にとって不都合な反応に 働くにもかかわらず、広く魚類、鳥類、哺乳類や線虫、ハエに至るまで保 存されていることから高い保存性を保証する生物にとって重要な役割を担 っていることが考えられた、AhRの本来的な生理機能を追求した結果、生 殖と免疫のT細胞の分化にかかわっていることが分って来たので,今後Ah Rの機能について、生殖とT細胞の分化に関連した研究の進展が期待される。 AhRはTCDDなどのリガンドによって活性化されることが知られているが, このような生理的機能の発揮に天然のリガンドが必要なのか,あるいはFS Hなどのシグナル伝達のリン酸化カスケードによるリン酸化のみによって も活性化されるのか、AhRの生理機能の研究からこの重要な問題は解決さ

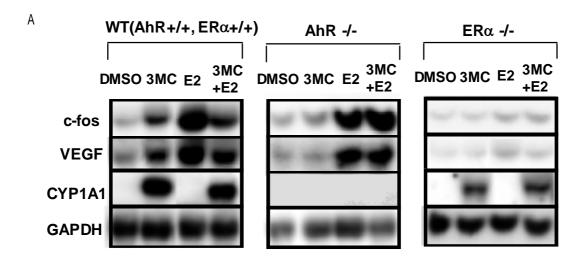
れる可能性がある。AhRはTCDD、3MC、ベンツピレンなどのアゴニストやラスベラトロール、α-ナフトフラボンなどのアンタゴニストなどが知られているので、AhRの活性を化合物によってコントロールすることが可能である。またヒフにおけるAhRの生理機能についても活性型AhRのトランスジェニックマウスが研究に使用できるようになっているので、研究が進展するであろう。AhRのヒト化マウスは、ヒトの化合物に対する応答性を予測するのに使える。例えば、薬の開発でCYP1A1の誘導性が一つの重要な岐路になっているが、生物種の感受性は、AhRによって変化するので、今後この問題はヒト化AhRマウスを用いて試されるべきである。ヒトのAhRはマウスのAhRに比較して化合物に対する感受性が低いので薬になる化合物の間口が広がる可能性がある。ヒト化AhRマウスの研究はこの点を考えてもう少し詳細に検討が加えられるべきであす。

(1)研究内容及び成果(武山)

ダイオキシン類をはじめとした人工加工物群が内分泌撹乱作用を発揮することは環境汚染による野生動物の雌化等で顕在化した事実である。このような性転換を伴うダイオキシン類の内分泌撹乱作用については、数多くの作用機構について検討がなされ、いくつかの仮説が立てられている。すなわち、女性ホルモンや男性ホルモン等の性ホルモン生合成撹乱や、これら性ホルモン受容体タンパクあるいはその遺伝子群の発現量そのものを撹乱する作用などが指摘されてきた。しかしながら、これらの機構のみではダイオキシン類の撹乱作用を明確に説明できるものではなかった。なぜならば、これら撹乱作用は性ホルモンの作用を一方的に亢進若しくは抑制するものではなく、臓器によってはその作用が正若しくは負に作用することが示されているからである。従って、今まで示されてきたような機構ではなく、性ホルモン作用を担う受容体自身の機能調節の可能性が考えられた。本研究では、従って従来のアプローチとは異なり、受容体の転写制御機能調節という観点から研究を展開したものである。以下、具体的な方法及び実施の内容について述べる。

エストロゲン作用を担うエストロゲン受容体(ER)とダイオキシン類の作用を担うAhR受容体との機能的相互作用について検討した。特に、両者の受容体は極めて類似した作用機序により、それぞれの転写機能を発揮するため、これら受容体の共通の転写共役因子についても検討した(図1)。培養細胞においてERの転写制御能に対するAhRの作用の有無を検討したと

ころ,驚いたことに,E2未結合で不活性状態のERをリガンド結合AhRが活性化し,ERを介した転写を活性化することが明らかになった。ERと転写共役因子との相互作用は本来E2結合に伴うAF-2の構造変化に依存しており,MAP kinaseによるリン酸化等これまでに知られていたクロストークにおいてもE2未結合ERが活性化する例は知られていなかった。この結果は遺伝子欠損マウスを用いた検討において再確認された。マウス子宮において,AhRリガンド3-methylcholanthrene(3MC)投与はE2投与と同様にエストロゲン標的遺伝子c-fos,VEGFの発現を誘導し,この誘導はAhR欠損マウス,ER α 欠損マウスのいずれにおいても検出されなかったのである。すなわちAhRリガンドはAhRに結合し,さらにER α を介するクロストーク経路でエストロゲン様作用を発揮すると考えられた。


また、Wormkeらの報告と一致して、E2結合により活性化状態のER機能はAhRにより抑制された。すなわちAhRはERシグナルの正常なON/OFFを撹乱するという、新規のクロストーク経路が見い出されたのである。

さらに我々はこのクロストークの分子機構を検討した。ERとAhRが直接 又は間接に会合する可能性を検討したところ、AhRはリガンド依存的にER と直接結合し、さらに転写共役因子p300をリクルートすることが明らかと なった。クロマチン免疫沈降(ChIP assay)によっても、エストロゲン標的遺 伝子プロモーター上でER、AhR、p300がAhRリガンド依存的に会合するこ とがわかった。また、HeLa細胞からの精製によっても、AhR、ER、p300は 分子量670kDa以上の複合体を形成していた。すなわち、E2未結合ER自身は 転写共役因子複合体をリクルートできないコンフォメーションをとってい るが、ERに直接結合した活性型AhRが転写共役因子をリクルートし転写制 御複合体を形成、ERが標的配列の認識を担うことで、結果的にエストロゲ ン標的遺伝子の転写が誘導されるのである。AhRがERを乗り物のように利 用するこの機構は「hijack仮説」として紹介された(図 2)。

今回の研究で、ダイオキシン類と女性ホルモンシグナルとの間に、受容体同士の相互作用を介した転写制御機構の撹乱というクロストーク経路が存在することが新たに明らかとなった。これまで両者のクロストークに関して動物、細胞レベルでの知見が報告されていたものの、内分泌撹乱化学物質の分子レベルでの作用点には不明な点が多かった。今回の研究はその一つの作用点が転写制御複合体を介した転写制御機構にあることを示している。内分泌撹乱化学物質の物質種は多様であるが標的となる生体機構は有限であるため、今回のような分子生物学的アプローチによって毒性機構

の全貌が解明されていくと期待される。

一方、ダイオキシン類の抗エストロゲン作用の分子機構として、Wormk eらはERの分解が亢進することを報告した。そこで、AhRリガンドのER転 写制御機能抑制の分子機構について、AhR及びERのタンパク分解制御について検討した。その結果、AhRはリガンド結合後直ちに核内に移行するが、この際AhRタンパクは不安定となり、分解することを確認することができた。更にERとの関連を詳細に検討したところ、AhRは直接相互作用するERタンパクをも不安定化することが明らかになった。このことは、ユビキチン化されたAhRは同時にERのユビキチン化を促進する効果が考えられ、活性化されたAhRは一種のタンパク分解促進因子のように思えた。このように、AhRリガンドの負の内分泌撹乱作用は受容体タンパクの分解制御を介する可能性が指摘された。

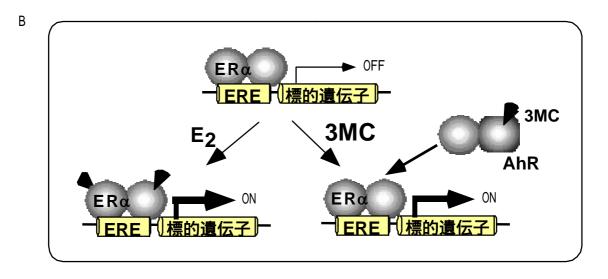


図1 AhR はリガンド未結合ERの転写促進能を誘導する

図1, AhRはリガンド未結合ERの転写促進能を促進する。

マウス子宮において、エストロゲン標的遺伝子c-fos、VEGFの発現がリガンド活性化AhR及び $ER\alpha$ を介して誘導される。

リガンド結合AhRによる正常なERシグナルの撹乱作用

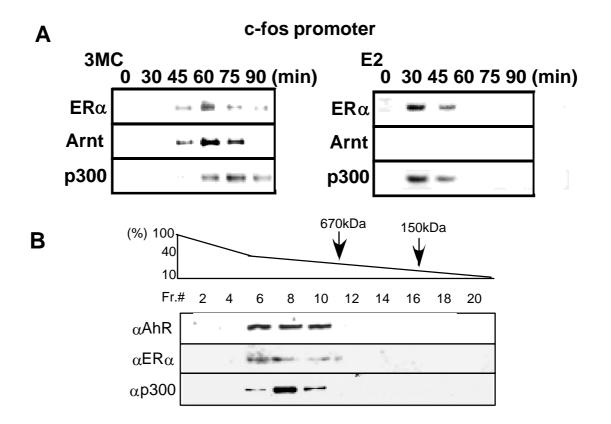


図 2 AhR, ERは転写制御複合体を形成する

図2, AhR, ERは転写制御複合体を形成する。

ChIP法により、エストロゲン標的遺伝子(c-fos)プロモーター上でAhR、 ER、転写共役因子p300が複合体を形成する。

子宮癌由来HeLa細胞からの精製により、AhR、ER、p300が巨大複合体を 形成する。

(2)研究成果の今後期待される効果(武山)

今回の研究結果から、ダイオキシン類の内分泌撹乱作用、特にエストロゲンの撹乱作用の分子機構の一端を明確にできた。その分子機構は従来から考えられてきた撹乱作用とは異なった様式であり、受容体間での相互作用であった。また、この受容体間の相互作用に伴い、核内の未知共役因子との会合が予想された。ERの転写機能促進の場合には、従来のERコアクチベーターとの会合は必ずしも確認できず、AhRのコアクチベーターでもあるp300/CBPのみ確認することができた。近年の転写促進機構を鑑みると、転写共役因子群は複合体としてこれら受容体転写制御因子群と相互作用することから、未知あるいは既知転写共役因子群との相互作用が考えられる。

実際,生化学的なアプローチにより,ER/AhR会合体を含む,核内巨大複合体の単離を試みたところ,その存在が確認され,現在複合体構成因子群の同定を急いでいるところである。

ER/AhRともにリガンドが結合した状態では、ERの機能は抑制され、両受容体タンパクは不安定化することを今回の結果から明らかにした(Ohtake et al., submitted)。現在までにユビキチン化を行うこれら受容体特異的E3リガーゼの存在は報告が無いが、これらの結果から特異的因子の存在が予想される。現在、上述と同様のアプローチにより、このタンパク分解に導く共役因子群の同定も進めているところである。

このような受容体群に結合する核内共役因子群を検索、同定することで ダイオキシン類のエストロゲン作用撹乱の分子機構の本態に迫れるものと 考えている。

今回はこのようにERの機能制御について詳細に解析したが、ERと同様に内分泌系で極めて重要な役割を果たしている他のステロイドホルモン受容体群についても同様な機構が考えられる。ダイオキシン類の内分泌撹乱作用として、雌化が野生動物の間で広く知られてきているが、その機構の一つとして男性ホルモン受容体(AR)のAhRによる機能抑制が考えられる。実際、AhRとARとの機能的関連について検討したところ、転写制御能に関し、相互に干渉作用がある可能性が考えられた。現在、この点についても詳細な解析を行っており、ERを介さないダイオキシン類の内分泌撹乱作用の一端が明らかになるかもしれない。また、AR、ERを含めた核内受容体群の中には、内因性リガンドが同定されていないオーファン受容体が存在するが、ダイオキシン類がそれら受容体のリガンドとして作用する可能性も考えられ、検討を必要とする。

- 3. 2 "内分泌攪乱物質の代謝に関わるP450の検討(鎌滝グループ)"
- (1)研究内容及び成果

【研究目的】

ダイオキシン類や多環芳香族炭化水素(PAH)などの内分泌攪乱物質に対する生体応答は多岐に渡るが、その中でも顕著に見られる現象は芳香族炭化水素受容体(AHR)を介した薬物代謝酵素(チトクロームP450、以下CYP)の誘導である。ダイオキシン類に代表されるハロゲン化芳香族炭化水素(HAH)は一般にCYPによる代謝を受けづらいのに対し、ベンゾ[a]ピレンや3-メチルコランスレン(3MC)に代表されるPAHはCYPにより遺伝子損傷性の代謝物へと変換される。

CYPによるPAHの代謝的活性化がPAHによる発がんのイニシエーションに重要な役割を果たすことはよく知られているが、この機構がPAHによる様々な内分泌 攪乱作用にも関与するか否かは不明である。そこで本研究では、ダイオキシン類 やPAHによる毒性発現、特にPAHによる内分泌攪乱作用、におけるCYP誘導の意 義を解明することを目的とした。

【研究方法】

9週齢の雌性野生型およびAHR欠損マウスに3MCを投与した。投与量は80 mg/kg body weightとし、2日間腹腔内投与した。最終投与より24時間後に肝臓を摘出し、mRNAを調製し、DNAマイクロアレイ(インサイト社、Mouse GEM1)にて3MCによりAHR依存的に発現が変化する遺伝子を探索した(図 1)。DNAマイクロアレイにより発現が2倍以上変化した遺伝子を抽出した。また、DNAマイクロアレイの結果はノーザンブロット分析により再現性を確認した。レポーターアッセイは、ヒト肝がん由来HepG2細胞にperoxisome prolifilator-activated receptor (PPAR) αに応答するレポータープラスミドおよびPPARa発現プラスミドを共導入し、3MCで処置することにより行った。なお、マウスを用いた実験は北海道大学薬学部動物実験委員会の規定に従って行った。

【研究結果】

DNAマイクロアレイ解析の結果、3MCによりAHR依存的に10遺伝子の発現が誘導され、44遺伝子の発現が抑制された。抑制された44遺伝子のうち、13遺伝子は脂質代謝に関与するPPARαの標的遺伝子群であった(CYP4A10、カルニチンパルミトイル転移酵素およびアシルCoA転移酵素など)。3MCによるPPARα標的遺伝子のAHR依存的な抑制はノーザンブロット分析で確認した(図 2)。以上の結果から、脂質代謝に関与するPPARα標的遺伝子の発現が3MCによりAHR依存的に抑制されることが明らかとなった。上記の抑制が3MCによりPARαシグナル伝達の抑制の結果であるか否かを調べるために、PPARαに応答するレポータープラスミドをHepG2細胞に導入し3MCで処置した。その結果、PPARαによる転写活性は3MCにより濃度依存的に抑制された。また、この抑制はAHRのアンタゴニストであるαーナフトフラボンにより解除された。この結果から、3MCはAHR依存的にPPARαシグナル伝達系を抑制することが明らかとなった。PPARαシグナル伝達系は、PPARαがそのパートナーであるレチノイドX受容体(RXR)αとヘテロダイマーを形成し、このヘテロダイマーがPPAR応答配列に結合することにより起こる。そこで次に、3MCがPPARαおよびRXRαの発現に及ぼす影響

をノーザンブロット分析およびウェスタンブロット分析により調べた。PPARα の発現は3MCによりほとんど変化しなかったが、RXRαの発現は3MCによりAHR 依存的にmRNAとタンパク質レベルの両方で抑制された。また、この抑制の経時 変化を調べたところ、mRNAの抑制は3MC投与後約24時間で認められたのに対し、 タンパク質の抑制は3MC投与後約4時間とはやい段階で認められた。以上の結果 から、3MCによるPPARα標的遺伝子の抑制はRXRαの発現抑制、特にタンパク質 レベルでの抑制,が原因であることが示唆された。上記の仮説をさらに検討する ために、RXRαが関与する他の核内受容体のシグナル伝達系も3MCにより抑制さ れるか否かをレポーターアッセイにより調べた。その結果、3MCはPPARαシグ ナル伝達系以外にもレチノイン酸代謝に関与するレチノイン酸受容体 (RAR), オキシステロール代謝に関与するliver X receptor (LXR) および脂肪細胞分化に 関与するPPARyのシグナル伝達系も抑制することが明らかとなった。最後に、3 MCによるPPARαシグナル伝達系の抑制が脂質代謝に与える影響を調べるため に、3MC投与した野生型およびAHR欠損型マウスの肝臓切片をオイルレッドで 染色し,脂肪滴の蓄積を検討した(図 3)。その結果,野生型マウスに3MCを 投与したときのみ,中心静脈付近に脂肪滴の蓄積が認められた。以上の結果より, 3MCなどのPAHはAHRを介してPPARαシグナル伝達系を抑制することにより、 脂質代謝異常ひいては脂肪肝などを誘発することが示唆された(図 4)。

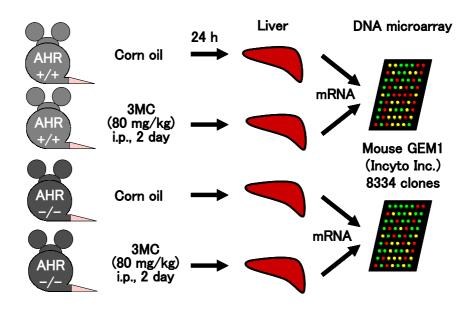


図 1. DNAマイクロアレイによる3MCによりAHR依存的に発現が変化する遺伝子の同 定

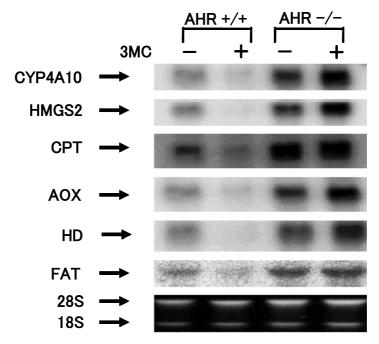


図 2. 3MCによるAHR依存的なPPARα標的遺伝子の発現抑制

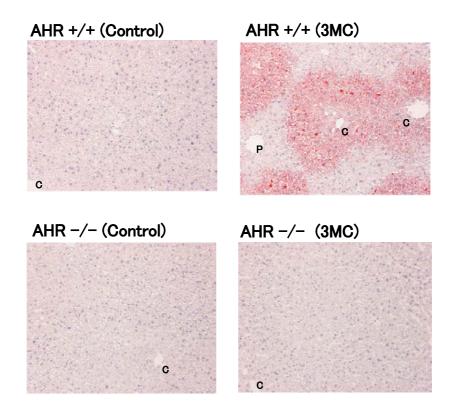


図 3. 肝臓における3MCによるAHR依存的な脂肪滴の蓄積。 C, central vein: P, portal vein.

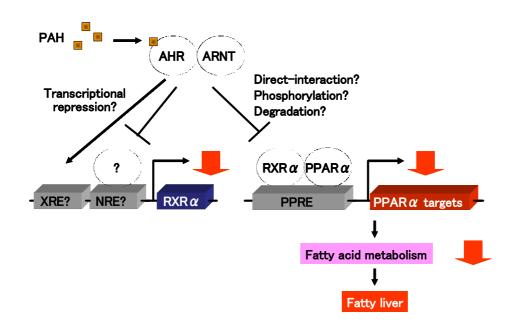
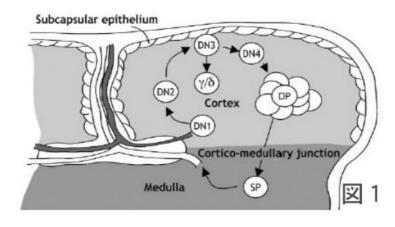


図 4. 3MCによるAHR依存的なPPARαシグナル伝達系の抑制モデル

(2)研究成果の今後期待される効果

ダイオキシン類やPAHによるAHRを介した毒性発現は多岐に渡るが、そ の分子機構に関してはほとんどわかっていない。本研究では、野生型およ びAHR欠損マウスを用いたDNAマイクロアレイ解析により、代表的なPAH である3MCがAHR依存的に脂質代謝に関与するPPARαシグナル伝達系を抑 制することを明らかにした。また、本研究は、3MCによるPPARαシグナル伝達 の抑制が肝臓における脂質代謝異常ひいては脂肪肝にも関与することを明らか にした。本研究では、3MC以外にもベンゾ[a]ピレンやDMBAなど、他のAHRの リガンドとなりうるPAHについても検討したが、これらPAHもまたPPARαシグ ナル伝達系を抑制した。PAHはタバコ煙中やディーゼル排気中などに多く含まれ るため、これらに高曝露されるヒトにおける脂質代謝異常などについて今後検討 していく必要があると思われる。また、本研究では3MCによるPPARαシグナル 伝達抑制の分子機構を検討した結果、この抑制はPPARαのヘテロダイマーのパ ートナーであるRXR α の抑制によることを明らかにした。RXR α はPPAR α 以外に も多くの核内受容体のヘテロダイマーのパートナーとして働き,ホルモンバラン スのマスターレギュレーターであることが知られている。このため, 本研究で見 出した機構は、PPARαシグナル伝達系にとどまらず、他の多くの核内受容体シ グナル伝達系にも当てはまる可能性がある。この可能性は、PAHによる多岐に渡 る毒性発現を説明しうる機構であり、今後さらなる検討が必要であると思われる。

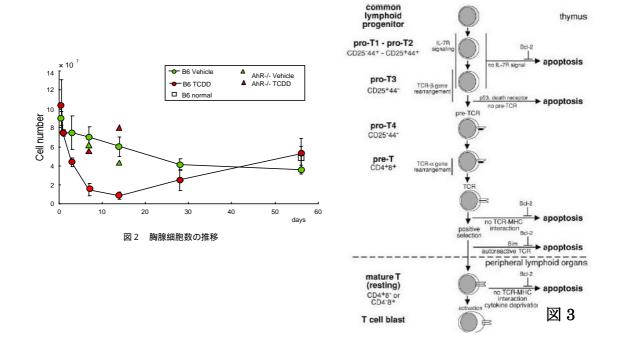

3. 3 "ダイオキシンによる胸腺縮退のメカニズム(菅野グループ)"

菅野グループ(広島大)は当初、ダイオキシンの胸腺に及ぼす影響解析を目指して研究チームを構成したがその後、派生的な研究として、造血幹細胞に対する影響解析の研究も行ったので、以下に別個に(胸腺)(造血幹細胞)と2つにわけて記載する。

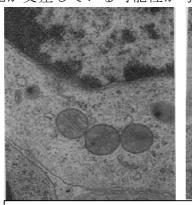
(1)研究内容及び成果

【胸腺】

胸腺という器官はTリンパ球の発生・分化に重要な器官で有るだけではなく,免疫系全体にとっても,「自己・非自己の識別」をリンパ球が学習する教育機関として非常に重要である。ここで正しく「自己同一性」を教育されなければ,外部からの感染症に対応出来なくなり,さらに間違った教育から自己を攻撃してしまう,などのために「感染症」「自己免疫疾患」「免疫不全」「アレルギー・アトピー」との関係を考えるうえで,中心的な器官である。その胸腺の中で,リンパ球は,図1の様に胸腺の中を移動しながら分化・成熟し,末梢・全身へと運ばれてゆく。さらに詳しくその分化段階を見ると図3の様な段階が判明しており,ほぼ各段階ごとに細胞死のルートが設定されていると考えられている。



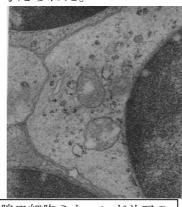
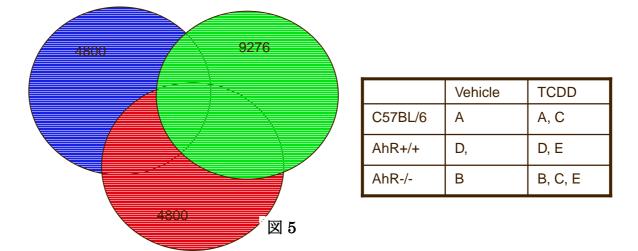
研究の経過:

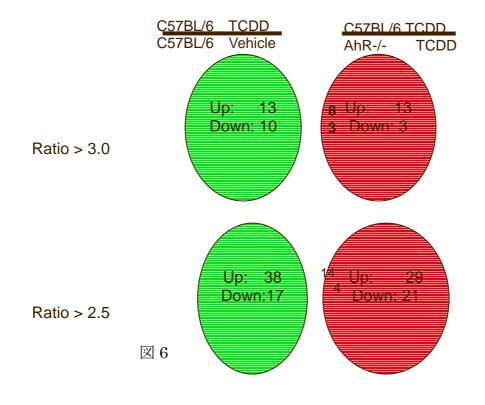

ヒトの体内に普通にダイオキシンが入ってくるのと同じ経路(経口投与)でマウスに投与したときに、「マウス個体(特に免疫系)に何が起きているのか?」という事を正確に記述・解析することにフォーカスを絞った。免疫学的には、最近リンパ球の発生・分化に核内受容体ファミリーが重要な役割を果たしていることが少しずつ明らかになってきているが、AhRが胸腺内T細胞分化にどのような役割を果たしているのか、という点に研究の的を絞っ

た(生体内のリガンドは不明?)。とにかく、ダイオキシンによる免疫不全 (胸腺萎縮を含む)に関して、あまりにも間違った情報が報告されている。 実際、ダイオキシンによる胸腺萎縮、免疫不全の作用点は、「アポトーシス・ 細胞周期停止だ」としてin vitroの実験をしている論文・報告があるが、そ れは間違いである事がはっきり分かった。

1) TCDDをただ1回,経口投与するだけで、3日後から胸腺の萎縮が始まり、回復するのに1ヶ月以上かかることがわかった(図2)。最も症状が顕著である3日—2週間の時期について、注目すると、この時期の胸腺は正常の1/10の大きさになり、遺伝子再構成を起こす分化段階(図3のpro-T3とpro-T4の間;)が最も影響が強い事などがわかった。DN3(ProT-3)の細胞をさらにresting(beta-selection前)なサイズの小さい細胞と、増殖している(beta-selection後)サイズの大きい細胞の比率を観察すると、明らかにTCDD投与群のbeta-selection後のサイズの大きな細胞数が減少しているのがわかる。このことから、DN3(ProT3)細胞で、pre-TCRシグナルが入り細胞増殖が起きるステージから後のT細胞分化段階においてTCDD投与による異常(細胞数の減少)が起こることが判明した。その分子機構としては、DN3細胞の増殖(またはサバイバル障害)と細胞死のバランスの破綻が起きていることが考えられた。

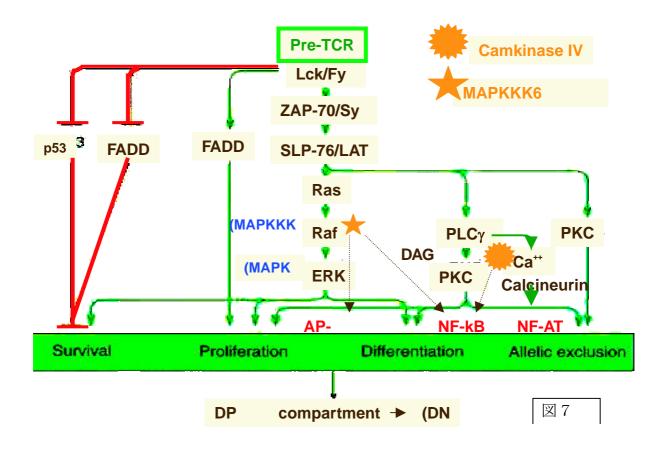
2)この時期のダイオキシンの作用点は細胞周期ではなく、細胞死調節機構であることが判明した。ダイオキシンによる胸腺細胞死は、DNA分断非依存性、Bcl-2 Tgマウスでレスキュー出来ない)、Caspase非依存性、であるが、ミトコンドリア膜電位依存性、の細胞死であることが分かり、「アポトーシス」とは異なるタイプの細胞死である事が分かった(データは示しません)。形態学的にも、電子顕微鏡観察を行ったところ、ミトコンドリアの膨化や、小胞体(ER)が空胞化している像が多く見られ、死細胞の割合も多かった(図4)。特にこのステップの細胞死はp53依存性の細胞死であることが判明してきており、AhR依存性の細胞死の経路とp53依存性細胞死が交差している可能性が考えられた。


図4 TCDD 投与による胸腺 T 細胞ミトコンドリアの 膨化(左; コントロール、右 TCDD 投与群)

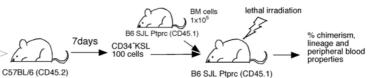
- 3) Ahリセプター遺伝子欠損マウスにおいて同様の実験を行うと、胸腺萎縮が 9.0%以上回復することから、ミトコンドリアの膜電位を介したCas pase非依存性の細胞死機構がAhR依存性である事が判明した。この経路・機構にAhR/Arntの標的遺伝子群が関与しているとが考えらた。この事は逆にいうと、この時期(図 1 、図3のDN3からDN4への移行期)にリンパ球が滞在しているsubcapsular領域にAhRのリガンドが存在している可能性も示唆している。
- 4)標的遺伝子の検索に関しては、マイクロアレイによる網羅的解析を行った。TCDD投与後12時間の時点では胸腺内T細胞のサブセット分布に変化が見られないので、投与後12時間の時点の、未熟なDN細胞群(CD4-CD8-)を回収し、RNAを抽出した後、マイクロアレイ解析を行った。DN細胞集団は胸腺全体の約5%程度であるため、1回の実験にマウスを50-100匹使用した。さらにマイクロアレイ解析のアーティファクトを減らすために3種類のマイ

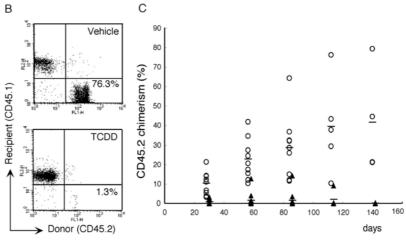
クロアレイを用いて実験を行った(図5)。

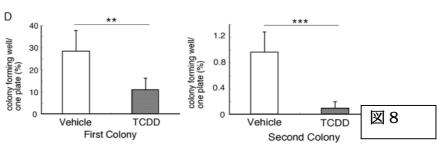


複数回ずつ異なったDNAマイクロアレイを用いた実験を行い、オーバーラップして検出された標的遺伝子群のみを解析対象とした(図5および表)。マウス実験より、このTCDD投与による胸腺萎縮はAhR依存性であることがわかっていたので、AhR-/-マウスを用いて同様な実験を行い、AhR-依存性の標的遺伝子群にさらに解析目標を絞った(図6)。その結果cut-off ratio 3.0以上に設定した場合には、AhR依存的にDN細胞群で動く遺伝子は、上昇するものが8個、減少するものが3個であった。

	Gene bank	Gene
	#	
Up	NM09692	Apolipoprotein A1
(ratio >3.0)		
	NM010217	Connective tissue growth factor (Ctgf, Hcs24, Fisp12)
	NM.008851	Phosphatidylinositol membrane-associated
		(Pitpnm,RdgB, DRES9, mpt-1)
	NM.019715	RIKEN cDNA 1700094M07(=potassium channel modulatory factor?)
	NM.019770	Coated vesicle membrane protein
	NM010483	Serotonin reseptor 5B (Htr5B, 5-Ht5B)
	NM.019728	Defensin beta 4 (Dfb4)
	NM.019540	Pore forming protein-like (Pfp1, Epsc5, Epsc50)
Down (ratio <3.0)	X58995	Calcium/calmodulin dependent protein kinase IV catalitic subunit
	NM.016675	Claudin
	NM.016693	MAPKKK6(Map3k6) (apoptosis signal regulating kinase -2, ASK-2)


特に、そのリストのなかで、発現が減少する遺伝子としてCaMKinaseIVとASK-2が見つかってきた。これらは共にpre-TCRのシグナル伝達系に関与するKinaseであり、これらの発現調節をAhR/Arntが行っていることが想定され、TCDDの作用点である可能性が高い事がわかった。(図 7)




(造血幹細胞)

免疫系・血球系細胞の基になる「造血幹細胞」に対するTCDDの影響は何であろうか?ほとんど報告がなされていないのが現状である。そこで、ダイオキシン投与による造血幹細胞の機能を骨髄移植の実験系を用いて解析を始めた。その結果、表面マーカーは造血幹細胞であるが、まったく再構築能を失っていることが判明した(図8参照)。図8Aの様に、ダイオキシン経口投与1週間後のマウス骨髄より、CD34、c-Kit⁺、Sca-1⁺、Lineage marker-negativeの造血幹細胞分画をFACS Vantage/cell sorterで単離し、その細胞100個を、致死量の放射線を照射し、血球系を破壊しておいたレシピエント・マウスに骨髄移植を行った。その後140日まで、観察し長期再構築能を検討した。図9Cのグラフで分かるように、コントロール群(白丸)は正常に血球系が再構築されたが、ダイオキシン投与群(黒三角)の幹細胞分画はその能力をほとんど失っていた。この結果は単にダイオキシン類が幹細胞の自己複製能をも標的にしているという毒性学的な観点だけでなく、AhRとその自然リガンド系が幹細胞の自己複製制御機構に関与していると考えることが出

(2)研究成果の今後期待される効果

(胸腺)

今回の研究から、AhR/Arnt系(またはTCDDの作用)は、T細胞のDiversity形成に重要なpreTCRからのシグナルを受け取った後の細胞増殖(beta-selection)を制御していることがわかった。少なくともそのシグナル伝達分子の遺伝子発現がAhR/Arntにより制御されていることがわかった。結果的に免疫系のDiversityが正常よりかなり小さくなることから、自己免疫疾患・アレルギーとの関係について無視できないことわかった。その人工的制御技術の開発、またはTCDDの作用を阻害する手段の開発につながる分子標的を示すことが出来た。その意味では社会的な波及効果は大きいと思う。(造血幹細胞)

この研究結果は、AhR/Arntを介して、造血幹細胞の自己複製能を制御できる

可能性が存在する事を意味している。このことは将来的には患者自身の造血幹細胞を用いた再生医療を考える上で、その人工的制御技術の開発という観点からは非常にインパクトが大きいと思われる。さらにTCDDが造血幹細胞の機能にも致命的な障害を与えているという、全く初めての研究結果なので、その意味でも初回的影響は大きいと思われる。

3. 4 "ダイオキシンと発生・生殖(山下グループ)"

(1)研究内容および成果

(水腎症)が観察される。

【はじめに】

環境汚染物質として悪名高いダイオキシンは、生体に対して種々の毒性を発揮する。その毒性は、肝臓の解毒酵素の誘導、発ガンのプロモータ作用、免疫毒性、生殖毒性、発生毒性(催奇形性)、内分泌攪乱作用と多岐にわたる。本研究は、マウスを用いて、ダイオキシンが胎児に奇形を誘発する機序を明らかにする目的で開始した。

【ダイオキシンがマウス胎児に奇形を起こす機序(口蓋裂と腎盂拡大)】 妊娠マウス(Jcl:ICR系統)の妊娠12.5日(膣栓発見日を妊娠0日とする)に ダイオキシンのうち、最も毒性が強いといわれる2,3,7,8四塩化ジベンゾパ ラジオキシン(2,3,7,8-tetrachlorodibenzo-p-dioxin、以下TCDDと略)を体重1 kg当り40 μ gの割合で1回強制経口投与する。妊娠18.5日(満期)に母体を屠 殺し、胎仔を取り出し、観察すると、ほぼすべての胎仔に口蓋裂と腎盂拡大

ダイオキシンによるマウス胎児の口蓋裂誘発機序を検討してみた。

二次口蓋の正常発生過程を見てみると、口蓋は左右の二次口蓋突起が最初は口腔に向かって垂直位をとっている。ついで、妊娠14.0から14.5日にかけて、口蓋突起は90度転位・挙上し、水平位をとる。左右の突起は正中線上で接触し、やがて両者が癒合することによって、口蓋は閉鎖し、口腔と鼻腔が隔てられることになる。

ダイオキシンによって、左右の口蓋突起は癒合が行われなくなり、左右の口蓋突起が離れたままの状態で出生に至ることになる。この状態を口蓋裂という。口蓋裂が生じると、新生児は口腔内を陰圧に保つことができず、哺乳が不可能となる。ダイオキシンによる口蓋裂誘発機構については、アメリカEPAのAbbott博士らのグループは、口蓋突起の上皮細胞が異常に増殖するために、左右の突起が癒合できず、そのために口蓋裂にいたるとの説を主張してきた。

私たちは、上記実験系において、妊娠13.5日の口蓋突起の粘膜上皮細胞、間葉細胞のBrdU取り込み率を見ることにより、突起の増殖能を調べた。すると、TCDD投与群で有意にBrdUの取り込みが低下していることが判明した。また、左右の突起が接触・癒合する、妊娠14.5日の口蓋粘膜上皮の上皮細胞の細胞死をTUNEL法で調べたところ、TCDD群と対照群との間には差は見られなかった。以上のことから、TCDDによる口蓋裂誘発機序は、TCDDが垂直位にある口蓋突起の粘膜上皮と間葉細胞に働き、両者の細胞増殖をおさえることによって、口蓋突起の伸長を抑制する。このため、口蓋突起が水平位に転位しても、左右の突起の接触はおこらない。これによって、口蓋裂が誘発されることになる(Takagi et al., 2000)。

さらに、TCDD投与の口蓋突起には、癒合能力がもはや失われているのかどうかを見た。妊娠7.5日に6 mg/kg体重の割合で塩化カドミウムを母体腹腔に投与すると、外脳症 exencephalyが生じる。これにより、左右の頭蓋が狭小化し、左右の口蓋突起を強制的に接触させる条件が作製される。この状態で、TCDD投与群で、左右の口蓋突起の癒合能力を見たところ、すべての胎児で口蓋は閉じていた。この結果は、TCDD投与群においても、口蓋突起の癒合能力は保たれていることを意味する (Takagi et al., 2000)。

TCDDによるマウス胎児の腎盂拡大の原因(病因)として、尿管上皮が過 剰増殖し、それが尿管腔をふさぎ、上流から流れ落ちてくる尿が貯留し、そ の結果、腎盂拡大に至ると説明されている。

尿管上皮は移行上皮であると組織学的に説明されているが、その細胞動態については、本当のところは、解明されていないのが実情である。そこで、今回は、正常尿管上皮細胞の細胞動態を微細形態学的・組織細胞化学的に検討し、発表した。

成獣マウス(Jcl:ICR)の尿管の透過電子顕微鏡標本を作製し、観察した。 組織細胞化学的手法としては、細胞をBrdUでラベルし、DNA増殖能を持つ 細胞の同定を行った。

観察の結果,成熟マウスの尿管上皮が,一般に言われている移行上皮ではなく,重層扁平上皮であることを明らかにできた。その根拠は2つ。1つには,マウス尿管上皮細胞は4層の細胞から成り立つ。基底膜側から,基底細胞,2つの中間細胞,表層細胞である。細胞内にある紡錘型小胞の成熟を超微形態学的に追及したところ,基底細胞,中間細胞,表層細胞へと内腔側に向かうほど,紡錘型小胞は成熟してゆくことが明らかになった。2つ目には,BrdU取り込み細胞は,最初,基底細胞の位置にあるが,時間経過をおって,

ラベルされた細胞の動きを見ると、ついで中間細胞がラベルされ、最後に表 層細胞がラベルされることが明らかとなった。

以上の証拠から、尿管上皮は重層扁平上皮であるの結論を得た。

【ダイオキシンとアリール炭化水素受容体】

ダイオキシンをはじめとするアリール炭化水素は細胞内に入ると、細胞質に存在するAhRと結合する。AhRは、もともと細胞質に存在し、HSP90(heat shock protein 90)をはじめとする、タンパクと結合することによって、安定化されている。ダイオキシンがAhRと結合すると、HSP90等の安定化タンパクが解離し、核移行シグナル(Nuclear localization signal、NLS)がオンになって、核に移行する。核内で、AhR核移行分子(AhR nuclear translocator、Arntと略)と結合し、AhR-Arntへテロ二重体を形成する。AhR-Arntは、DNAのダイオキシン反応配列(Xenobiotic responsive element、XREと略)に結合する。結合に伴い、転写共役因子群にシグナルが伝わり、種々の遺伝子発現を調節する。チトクロームP450酵素のうち、1A1(CYP 1A1)はその代表的なものであり、肝臓で多量に発現し、解毒の第1相の反応を活発に進める。

ダイオキシンは、その化学構造が非常に安定で、分解を受けにくい。CYP 1A1酵素を誘導しても、この酵素はダイオキシンを代謝することはできない。

AhRはダイオキシンと挙動を共にするタンパクがあることが知られるようになり、受容体としての作用があるのではないかと推測された後、1992年にクローニングされた。

【アリール炭化水素受容体遺伝子欠損マウスにおけるダイオキシンの奇形 誘発に及ぼす影響】

ダイオキシンは生体内でアリール炭化水素受容体(別名ダイオキシン受容体, Aryl hydrocarbon receptor, 以下AhRと略)を介して,毒性を発揮すると言われる。AhRの作用を調べる目的で,遺伝子欠損マウスが作製された(Mi mura et al., 1997)。

TCDDを妊娠12.5日(膣栓発見日を妊娠0日とする)のマウスに40μg/kg体重の割合で1回強制経口投与すると、マウスの系統がC57BL/6Jの場合、すべての胎児に口蓋裂と腎盂拡大が誘発された。一方、マウスがAhR-/-(AhR遺伝子欠損ホモ)の場合、胎児には口蓋裂も腎盂拡大も見られなかった(Mimura et al., 1997)。AhRの遺伝子型がヘテロの場合は、中間的な値をとるこ

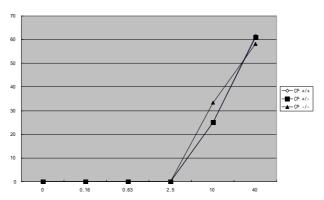
とが判明し、AhR+/-遺伝子型を持つ胎児の奇形誘発は、AhR+/+野生型胎児のそれに比べると頻度が低かった。このことは、奇形誘発には、AhR遺伝子産物の用量依存効果 Gene dosage effectが観察されたことを意味する(Yama shita et al., 2000)。

さらに、どういう遺伝子メッセージのカスケードが、口蓋突起の増殖を抑制し、口蓋裂を誘発するにいたるのかを明らかにするための実験を行った。方法は、上記、実験系を用いて、TCDDを同じ用量で、妊娠12.5日のC57BL/6Jマウスに投与し、投与6、12、24時間後の胎児の口蓋部分の遺伝子メッセージの発現を、ディファレンシャル・ディスプレイ法、ディファレンシャル・スクリーニング法、cDNAマイクロアレイ法で見た。メッセージの検討には、投与12時間後が適当であることが判明したが、結局、うまくカスケードを描くには至らなかった。

【アリール炭化水素受容体(ダイオキシン受容体)抑制因子欠損が,ダイオキシンの奇形誘発に及ぼす影響】

AhRと類似した構造をもつタンパク(bHLHドメインとPASドメインをもつ)をスクリーニングしている最中に、培養細胞系で、AhRの作用を抑制する働きをもつ、AhR抑制因子 (AhR repressor、AhRR) がクローニングされた(Mimura et al., 1999; Baba et al., 2001; Mimura and Fujii-Kuriyama, 2002)。今回、このAhRR遺伝子の欠損マウスが作製された(論文未発表)。

AhR-Arnt複合体がDNAのXRE (Xenobiotic responsive element)を認識し、種々の遺伝子の転写を調節するが、AhRRは発現が上昇する遺伝子産物のひとつである。AhRRは、さらにArntとヘテロ二重体を形成する。AhR-Arnt、AhRR-Arntの両者がXREを取り合うことによって、AhRの作用を拮抗的に阻害する。こうして、AhRの作用がAhRRによって抑制される結果、負のフィードバック・ループが形成される。


さて、AhRR遺伝子を欠損したホモマウスにおいては、この負のフィードバック・ループの一翼が欠損することになり、リガンドを結合したAhR-Arnt系の転写が促進され続けることが、予想された。ダイオキシンの口蓋裂誘発の実験系において、AhRR欠損マウスでは、ダイオキシンの影響は強くなるのだろうか。結果は、「増強しない」であった。

マウスは細谷らが作製したAhRR遺伝子欠損マウスを用いた。メスAhRR-/-マウスをオスC57BL/6Jにバッククロスし、AhRR+/-ヘテロマウスを得た。このAhRR+/-ヘテロマウスの雌雄を交配し、妊娠マウスを得た。胎児の遺伝子

型はメンデルの法則に従って、AhRR-/-、+/-、+/+(野生型)が得られた。

妊娠12.5日のAhRR+/-マウスに、TCDDを公比4で、0(溶媒)、0.156、0.625、2.5、10、40µg/kg体重の割合で1回投与した。各用量群に供した妊娠マウスは7母体とした。妊娠18.5日に母体を屠殺し、胎児の口蓋裂の有無、腎盂拡大の有無を観察した。胎児の尾からDNAを抽出して、AhRRの遺伝子型を判定した。各用量での胎児の遺伝子型別の口蓋裂、腎盂拡大の頻度を計算した。

TCDD 10, $40\mu g/kg$ 投与群の野生型胎児 (AhRR+/+) において、口蓋裂が観察された。AhRR+/-, -/-の胎児においては、口蓋裂の誘発率がAhRR+/+の

それと殆ど同じであった。AhRR遺伝子型の違いと口蓋裂誘発との関係を示す結果を図に示す。横軸はTCDDの用量 $(\mu g/kg)$ を、縦軸は口蓋裂の誘発率(%per fetus)を表す。腎盂拡大については、予想とは逆にAhRR-/-群が野生型群よりも誘発率が若干低いという結果が得られた。

胎児の口蓋裂、腎盂拡大をエンドポイントにした場合、AhRR遺伝子欠損マウスのダイオキシンへの感受性上昇は見られなかった。野生型マウスにおいて、リガンド存在下でAhRRの発現は臓器によって異なる。さらに詳細にAhRRの発現を調べて、実験にのぞむ必要がある。

3. 研究成果

3.5 "AhRR, AhR/Nrf2欠失動物の作製と機能解析(山本・本橋グループ)" (1)研究内容および成果

我々は最近,異物代謝系第2相の酵素群の発現が転写因子Nrf2により統一的に調節されることを発見した。このことは、同第1相の反応を触媒する酵素群がPAS群転写因子により統一的に調節されていることと呼応して、異物代謝系の発現調節機構の包括的な理解を可能とするものと思われる。第1相の酵素群の誘導の際には、AhR(ダイオキシン受容体)が細胞質から核に移

行するが、その転写促進活性はAhRRによって抑制される。一方、第2相の酵素群の場合には、Keap1がNrf2の安定性と核への移行を調節している。本研究では、異物に対する応答系の分子メカニズムと、生体における異物代謝系第1相、あるいは、第2相の応答系の意義を明らかにし、他の薬剤応答系とのクロストークも明らかにすることを目指している。また、このような転写因子の核移行、シス配列への結合、さらにそこから基本転写装置へ向かっての制御情報の流れを明らかにし、異物に対する応答反応の分子機構を理解する。そして、その知見をもとに、環境中の異物の生物モニター系を確立する。

AhR制御系遺伝子やNrf2制御系遺伝子の遺伝子改変マウスを用いて、薬剤投与実験により毒性の発現や、発癌を検討した。AhR/Nrf22重欠損マウスの薬剤投与実験、AhRR欠損マウスやAhRR/Nrf22重欠損マウスの化学発癌実験を行った。また、とりわけ、AhRの機能は種により大きく異なることが知られているので、ヒトでの反応性をモニターするためのモデル動物作製のために、ヒトAhR (hAHR) cDNAノックインマウスを作製し、その薬剤に対する応答性を検討した。

AhR/Nrf22 重欠損マウスの薬剤に対する反応性を調べたところ、AhRリガ ンドである3-MCや、Nrf2の活性化剤であるBHAに対する反応は著しく低下 していたが、フェノバルビタールに対する反応は保たれており、むしろ、増 強しているという結果であった。AhR制御系・Nrf2制御系のいずれにも依存 しない薬物代謝系のみを有するマウスを得ることができたといえる。AhRR 欠損マウスやAhRR/Nrf22重欠損マウスの化学発癌実験では,野生型に比べ て,AhRR欠損マウスにおける発癌が亢進していることを示唆する結果が得 られつつある。つまり、AhRの抑制性因子AhRRの欠損によりAhRの機能が 亢進した状態が維持され、その結果、生体高分子に障害をもたらす活性化型 代謝中間体が増加し、発癌の増加につながったものと考えられる。hAHRノ ックインマウスの反応性を検討したところ, 3-メチルコラントレンに対する 反応は、hAHRノックインマウスもコントロールマウスも同程度であったが、 TCDDに対する反応は前者の方が弱いという結果であった。この結果は、ダ イオキシン受容体のリガンドに対する反応特異性が、種により異なること、 そして、hAHRノックインマウスがヒトの反応の特異性を再現できるモニタ 一動物として利用可能であることを示唆している。

【Nrf2欠損マウスの薬剤応答性の検討】

Nrf2欠損マウスを、ディーゼルエンジン排気ガスに曝露したところ、同マ ウスでは、野生型マウスに比べて、DNA アダクト (DNA adduct=外来異物 がDNAに共有結合した複合体で、遺伝子の損傷を誘導する状態) が過剰に産 生されることが明らかになった。この結果から、Nrf2によって誘導される生 体防衛系がディーゼルエンジン排気ガスに対する防衛系において重要であ ることが示唆された。また、Nrf2欠損マウスにアセトアミノフェンを投与し、 その後の肝障害の出現について、検討したところ、同マウスにおいては、高 頻度に急性肝障害がおこることが明らかになった。Nrf2欠損マウスでは、ア セトアミノフェンに対する感受性が顕著に上昇していることが明らかとな った。さらに、化学発がん防御機構におけるNrf2の役割を明らかにするため に、ベンツピレンの胃内投与実験を行ったところ、同マウスでは、高頻度に 胃ガンが発症することが明らかになった。さらに、以前よりベンツピレンと 同時にとうよすることで、その発がん作用を抑制することが知られていたオ ルティプラッツの効果を検討したところ,Nrf2欠損マウスにおいて,オルテ ィプラッツの発癌抑制効果が認められなかった。この結果から、Nrf2による 異物代謝系第2相の活性化が、発癌抑制に重要であることが明らかになった。

【keap1欠損マウスの解析】

Nrf2の抑制性制御因子であるkeap1遺伝子破壊マウスを作製したところ、同マウスは、食道と前胃の異常角化による摂食障害で、生後2—3週で、致死であった。出生直後の肝臓における遺伝子発現を調べたところ、keap1遺伝子破壊マウスにおいては、異物代謝系第2相の酵素群の非誘導時における発現量が上昇していることと、薬剤による誘導が消失していることが明らかになった。マウス個体レベルにおいて、Keap1がNrf2の活性を負に制御していることが証明された。さらに、keap1欠損マウスにおける第2相酵素群の発現量の上昇は、keap1/Nrf22重欠損マウスでは、完全に解除された。これは、Keap1がNrf2の活性を負に制御していることが、個体において証明する結果である。また、Nrf2-Keap1の相互作用が、薬剤に対するセンター機能を果たしている可能性が強く示唆された。

【AhR::Nrf22重欠損マウスの作製の薬剤に対する応答性の検討】

AhRとNrf2により制御される第1相,第2相酵素群が,薬剤の毒性発現に どのように貢献するのかを明らかにするために,また,これらの酵素群の機 能に依存しない薬物代謝系の実体を明らかにするために,AhR欠損マウスと Nrf2欠損マウスを交配することにより、これらが制御する酵素群の誘導的発現が全ておこらないマウスAhR::Nrf22重欠失マウスを作製し、同マウスの薬剤に対する反応性を調べた。その結果、AhRリガンドである3-MCや、Nrf2の活性化剤であるBHAに対する反応は著しく低下していたが、フェノバルビタールに対する反応は保たれており、むしろ、増強しているという結果であった。AhR::Nrf22重欠失マウスに対して様々な薬剤を投与し、さらに、その薬剤の代謝経路、代謝産物を調べることにより、AhRとNrf2に制御される酵素群の、薬物代謝と毒性の発現における重要性が明らかになると考えられる。

【AhRR::Nrf22重欠損マウスの易発癌性の検討】

AhRの抑制性因子AhRRの欠損によりAhRの機能が亢進した状態が維持されるかどうか、そして、AhR機能亢進状態は、易発癌性の素地となりえるかどうかを検討するために、AhRR欠損マウスとAhRR::Nrf22重欠損マウスに対して皮下にベンツピレンを投与して、AhRの標的遺伝子であるCYP1A1の発現と、腫瘍が生じるまでの時間とその個数を調べた。AhRR欠損マウスでは、CYP1A1の発現誘導が、遷延する傾向が認められ、さらに、第2相酵素群の誘導もおこっていることが明らかになった。また、皮膚における発がん実験では、野生型マウスに比べて、腫瘍が明らかになるまでの時間が延長しており、化学発がんに対して、むしろ抵抗性になっていることが示唆された。これは、第2相酵素群がより高レベルに誘導される傾向が有るためと考えられる。

【ヒトAhRノックインマウスの作製と薬剤反応性の検討】

薬剤の毒性発現に対する第1相酵素群の役割を明らかにするため、第1相酵素群の誘導に関わる制御因子のうちAhRに注目し、同因子の機能を個体において検討することを試みた。AhR分子の性質には種差が大きく、そのために、ダイオキシンなど芳香族炭化水素に対する反応は、種により質的・量的に異なっていることがこれまでの報告から推測されている。in vitroで計測されたTCDDとの親和性は、C57BL6のAhR(AhR^{b-1})で高く、DBA/2のAhR(AhR^d)で低く、後者の親和性はhAHRのそれと同程度である。しかし、AhR分子のC末端側は、hAhRとAhR^dとでは、大きく異なっており、それぞれの分子に特有の性質を担っている可能性が示唆される。そこで、ヒトのhAHRを有するhAhRノックインマウスを作製し、その薬剤に対する反応性を調べ

た。このマウスに対して、hAhRの組織における発現の確認を行った後、3-メチルコラントレン(3-MC)と2.3.7.8-TCDDの投与実験をおこない、肝臓におけるCYP1A遺伝子群の誘導的発現の検討と、催奇形性の検討を行った。

3-MC投与による肝臓でのCYP1A1あるいはCYP1A2の誘導の強度は、 AhR^b マウス>> AhR^d マウス=hAhRマウスという順番であり、hAhRマウスと AhR^d マウスの反応性はほぼ等しかった。一方、TCDD投与による誘導の強度は、 AhR^b でウス> AhR^d マウス>hAhRマウスであり、hAhRマウスは3-MCに比べてTCDDに反応しにくいということが明らかになった。TCDDに対する催奇形性も、この結果と一致する傾向が得られた。口蓋裂は、 AhR^b でフスで100%、 AhR^d マウスで30%、hAhRマウスで0%という発生率であった。水腎症の発生率は、いずれの系統においても8割前後であったが、重症度は AhR^b でフス> AhR^d マウス> AhR^d マウス> AhR^d マウス> AhR^d マウス> AhR^d マウス> AhR^d

hAhRマウスが3-MCに対しては、AhR^dマウスとほぼ同程度の反応を示したのにも関わらず、TCDDに対しては、それよりも弱い反応しか示さなかったということである。AhRが介在する反応のリガンド特異性が、マウスとヒトとでは、異なっている可能性が示唆された。

3. 研究成果

- 3. 6 "AhRの作用メカニズム (十川グループ)"
- (1)研究内容及び成果

【Ahリセプターリプレッサー遺伝子のクローニングと構造解析】

メチルコランスレン(MC)などの外来異物は、Ahリセプター(AhR)と名づけられた、受容体型転写因子にリガンドとして結合し、P4501A1やP4501B1などの遺伝子上流に存在するXRE配列に結合し、転写を活性化することが知られている。このためには、核内でAhRはArntとヘテロダイマーを形成することが必要である。この転写活性化を抑制する因子として、AhRリプレッサー(AhRR)が見出された。AhRRはAhRとN末端からDNA結合活性やArntとのヘテロダイマー形成に必要な構造である、HLHモチーフとPAS Aドメインまでアミノ酸配列の類似性があり、Arntとヘテロダイマーを形成し、XREに結合する。また、分子のC末端側に転写活性化抑制領域が存在した。細胞内で強制発現したところ、AhRの転写活性化を選択的に阻害した。これらの性質により、AhRRはAhRの転写活性化に対する特異的抑制因子と考えられている。マウスAhRR遺伝子を単離し、構造解析ならびにプロモーター解析を行った。マウスAhRR遺伝子は約60kbの長さで、11のエキソンからなっていた。

FISH解析によって,マウス染色体13C2,ラット染色体1p11.2,ヒト染色体5 p15.3にAhRR遺伝子は存在することが判明した。AhRR遺伝子上流にはTATA ボックスはなく,複数の転写開始点が存在した。非常に興味深いことに,構 造解析によって転写開始点から、-45、-388、-1296の位置に3つのXREが存 在することが判明した。これらのXREの機能を調べるために、ゲルシフトア ッセイを行ったところ, AhR-Arntへテロダイマーが結合した。また, DNA トランスフェクションによって、MCによる誘導を調べたところ、レポータ 一遺伝子として使ったルシフェラーゼ活性が12倍に上昇した。さらに遺伝子 上流には、GCボックスが存在した。XREとGCボックスのプロモーター上の 共在は、MCで誘導される遺伝子に特徴的な組み合わせであり、AhRR遺伝子 もその範疇に入ると考えられた。GCボックス結合因子を解析したところ、S p1とSp3が結合することが分かった。さらに、転写開始点の上流にNF-kB結 合サイトが存在した。このDNAエレメントにはp65/p50が結合した。AhRR遺 伝子プロモーターをルシフェラーゼ遺伝子につないだレポーター活性は,フ オルボールエステルであるTPA処理によって2倍に増加した。また, MCとT PAによってトランスフェクションした細胞を処理したところ, 相乗的にレ ポーター活性が増加した。以上の結果から、AhRR遺伝子はAhRの下流に位 置し、フィードバック的に転写を阻害することが強く示唆された。また、N f-kB結合配列がプロモーター領域に見出され, p65/p50が結合しTPAによって 活性化されたことは、AhR活性がAhRRの抑制活性の増加をとおして、サイ トカインなどで抑制されることを示唆し, 免疫系と薬物代謝系との相互作用 を示唆し、非常に興味がもたれる。

【Ahリセプターの転写のコアクティベーターとしての機能】

メチルコランスレンで転写が活性化されるCYP1A2遺伝子は、CYP1A1遺伝子と異なり、内在性のCYP1A2を誘導的に発現する培養細胞が長い間見出されず、転写調節のメカニズムの解明は大きく遅れていた。HepG2細胞で内在性CYP1A2の発現が報告され、我々は、HepG2細胞をトランスフェクションの受容細胞として、ラット遺伝子上流を使って誘導的発現に必要なエンハンサーを同定した。転写開始点から-5.6kb上流をもったDNAフラグメントをCAT遺伝子につないだ発現プラスミドを、HepG2細胞にトランスフェクションしたところ、CAT活性がMC処理によって増大した。多くの欠失を遺伝子上流にいれ、この誘導に必要な領域を調べたところ、転写開始点から約-2 kb上流に2つの領域(A領域とB領域)を見出した。この2つの領域のうちB領

域が誘導的エンハンサーであることが分かり、A領域はB領域の活性を強め る働きがあることが判明した。B領域は最終的に24 bpまで狭められた。この エンハンサーに突然変異を導入して,詳細にその活性に必要な配列を調べた ところ,6塩基対離れた4塩基対からなる繰り返し構造が重要であることが判 明した。このCYP1A2エンハンサー配列の特徴はXREとまったく異なっており、 ゲルシフトアッセイなどで詳細に調べたところ、細胞由来のAhリセプター とArntのヘテロダイマーも、大腸菌で発現した組換えAhR-Arntも直接結合し なかった。そこで、AhR-Arntはエンハンサーに直接結合せず、エンハンサー 結合因子に相互作用し,エンハンサーには間接的に結合すると考え,エンハ ンサーに直接する因子を探索した。HepG2細胞でゲルシフトアッセイを行っ たところ、特異的結合タンパク質が1つ見出され、調べた限りの培養細胞で すべて、結合因子は存在した。この結合因子は、細胞核に局在しており、M C処理によって結合活性は、変化しなかった。この結合因子を精製するため に、マウスの種々の組織から核抽出液を調製し、CYP1A2エンハンサー結合 活性をゲルシフト法で調べたところ, 腎臓が最も比含量が高いことがわかっ た。また、肝臓その他、調べた組織すべてで、結合活性は見出された。そこ で,マウス500匹の腎臓から核を単離し抽出液を調製し,精製の出発材料と した。まず、硫安沈殿を行い、つぎにDEAEセルロースを用いた、イオン交 換クロマトグラフィー,続いて,ヘパリン-セファロースクロマトグラフィ ーで部分精製後、エンハンサー配列を持つオリゴヌクレオチドによるDNA アフィニティークロマトグラフィーによって最終的に精製した。SDS-PAGE によって解析したところ、約60kDaのところに4本のバンドが認められた。こ れらのバンドのうち主要な2本のバンドはゲルから抽出後,SDSを除く再生 処理によりエンハンサー結合活性を示し, そのゲルシフトのバンドの位置は, 目的タンパク質と同じ移動度であり、精製タンパク質は目的とするエンハン サー結合因子であることが確認された。得られた4つのタンパク質のリジル エンドペプチダーゼによる消化物のペプチドマップは非常に類似しており、 類縁のたんぱく質である可能性が高いと考えられた。 ゲル内でリジルエンド ペプチダーゼ消化を行い、HPLCで精製したペプチドを分離し、アミノ酸配 列決定を行ったところ、3つのタンパク質は、転写因子LBP-1a, LBP-1b, LB P-cであることがわかった。4番目のバンドは同定できなかったが、LBP-1c のプロテアーゼ分解産物か、LBP-9であると予想された。つぎに、in vitroで これらLBP-1ファミリータンパク質を合成し、ゲルシフトアッセイを行った ところ,LBP-1タンパク質はCYP1A2エンハンサーに結合した。さらに,LB

P-1タンパク質に対する抗体を使い、ゲルシフトアッセイを行ったところ、C YP1A2エンハンサーに特異的に結合するタンパク由来のバンドはスーパー シフトした。これらの結果から、腎臓や培養細胞のCYP1A2エンハンサー結 合タンパク質は、LBP-1ファミリータンパク質であることが証明された。LB P-1ファミリーは2つの遺伝子座から構成され、それぞれオルタナティブスプ ライシングによって2つずつの遺伝子産物(LBP-1aとLBP-1b, LBP-1cとLBP-1d)が生成することが報告されている。これら4つの産物のうち, LBP-1dはD NA結合活性に必要な領域を欠き、転写の阻害因子として機能すると考えら れている。また、ファミリー内で自由にLBP-1タンパク質はホモダイマー、 ヘテロダイマーをつくり, DNAに結合し転写を活性化すると考えられている。 今までに知られているLBP-1によって、転写が調節される遺伝子は、HIV-1、 β-グロビン、CYP2d9などの遺伝子が知られており、かなり多くの遺伝子の 転写に関係していると考えられている。しかしながら, 特定の生理機能に対 応した転写因子ではなく,種々の雑多な遺伝子の発現に関係しており、そう いった意味であまり注目されていない転写因子である。また, DNA結合のコ ンセンサスは報告があり, 我々のエンハンサーから導いた重要な塩基配列を 満足していた。

我々はエンハンサー結合因子としてLBP-1を同定した後、AhR-Arntとの相 互作用を調べた。まず、培養細胞でGST-AhR、GST-ArntとFLAGタグをもつL BP-1タンパク質を共発現し、GSTプルダウンアッセイを行った。すべてのL BP-1ファミリーメンバーとAhリセプターが直接結合し、ArntとはLBP-1aとL BP-1cが結合することが、FLAGタグに対する抗体を用いたウエスタンブロッ トの結果明らかとなった。また、Ahリセプター/ArntとLBP-1タンパク質を 培養細胞で共発現し、ルシフェラーゼレポーター活性を測定したところ、A hR-ArntとLBP-1タンパク質は、相乗的にCYP1A2エンハンサーからの転写を 活性化することを示すことができた。これらの実験事実から、CYP1A2エン ハンサーにLBP-1ファミリーメンバーが直接,ダイマーとして結合し,さら にAhリセプター/ArntヘテロダイマーがコアクティベーターとしてLBP-1に 結合し、CYP1A2遺伝子の転写を、外来異物依存的に活性化していることが 判明した。我々の実験結果ではLBP-1cがやや強くCYP1A2エンハンサーに結 合することが分かったが、その他のLBP-1タンパク質もCYP1A2エンハンサ ーに結合し、LBP-1タンパク質のエンハンサーに対する特異性は、あまりな いと考えてよさそうである。

多くのMCで誘導される,薬物代謝酵素の遺伝子がその転写調節領域にXR

Eをもち、直接AhR-Arntによって転写が活性化されるメカニズムを採用しているのに比べて、どうしてCYP1A2のみが、AhR-Arntによる転写活性化に、間接的な相互作用メカニズムを採用しているのかは、興味のあるところである。その理由は不明であるが、つぎに報告するようにXREを採用するメカニズムに比べて、CpGメチル化の影響を受けにくいメカニズムであることか確かのようである。老化に伴ったCpGのメチル化に関係なく、薬物代謝を行うのに有用な機構と考えられる。

【AhR-Arnt、AhRR-Arntの大腸菌における共発現とDNA結合活性】

AhRは細胞質でHsp90などと会合しており、リガンド結合後、核移行しArntとヘテロダイマーを形成する。このようにAhRは多くのタンパク質、有機低分子と相互作用し、生化学的にも興味あるタンパク質である。そこで、生化学的な解析に必要な量を取得すべく、種々の発現系でAhRの大量発現を試みてきたが不首尾であった。それらの経験を通じておそらく、AhRの単独での発現は困難であろうと結論した。そこで、安定的に発現することが予想されるAhRとArntのヘテロダイマーの大腸菌での共発現を試みた。

すでに、AhR、Arntとも大腸菌での発現では、分解されFull-lengthのタンパ クは得られないことが分かっていたので、bHLH-PASドメインのみを発現さ せた。発現したタンパク質を解析したところ、ヘテロダイマーを菌体内で形 成していると考えられ、単独での発現に比べて水溶性が、格段に向上してい た。得られたAhR-Arnt、AhRR-Arntへテロダイマーを精製し、DNA結合の解 離定数をゲルシフト法で求めた。AhR-ArntのXREに対する解離定数は2.0 n Mであった。AhRR-ArntのXREに対する解離定数は同じく,2.0 nMであった。 細胞由来のAhR-ArntのXREに対する解離定数は, 1.2 - 2.5 nMと報告されて おり、ほぼ同等の値が得られたことになり、我々の行った大腸菌での発現は、 天然のタンパク質と同じコンフォメーションを持っていると考えられた。 つ ぎに,XRE配列はメチル化を受けるCpG配列をコア配列内にもっており,メ チル化のDNA結合に対する影響を調べた。どちらのストランドもメチル化さ れた場合,解離定数は100 nMとなり,大きく結合親和性は低下することが 分かった。片方の鎖がメチル化された場合は,29 nMと8.0 nMという結合定 数が得られた。これらの結果から,メチル化によって,XREに対するAhR-A rntの結合は大きく弱まり、転写活性は大きく低下することが予想された。ヒ トをふくむ動物の組織では、加齢とともに薬物代謝活性が弱くなることが知 られている。我々の得た結果は、この加齢による低下が、DNAのメチル化が 1つの原因であり、それによる、AhR-Arntの結合活性が弱まった結果である ことを示唆している。

大腸菌で発現したAhRをMALDI-TOFマススペクトロメトリーで解析したところ、予想された分子量をもつ転写産物は発現しておらず、PAS-B領域でプロテアーゼによって分解を受け、分子量の異なったいくつかのタンパク質からできていることが判明した。この結果はAhRとArntとのヘテロダイマー形成において、PAS-B領域が不要であることの直接の証明となった。AhRRはPAS-B領域を欠損していることが知られているが、Arntとのヘテロダイマー形成、XREとの結合に関して、AhRと同等の活性をもつことが報告されている。PASBドメインはヘテロダイマー形成に必要でないことが示唆されてきたが、本研究で得られた結果は、精製されたタンパク質でこれらの報告を最終的に確認したことになる。また、PASタンパク質のDNA結合活性にリン酸化が関与しているとのいくつかの報告があるが、大腸菌でリン酸化は起こりえず、我々の得た組換えAhR-Arntヘテロダイマーが、細胞由来のヘテロダイマーと、ほぼ同等のDNA結合活性を示すという結果は、これを強く否定するものである。

(2)研究成果の今後期待される効果

AhRRの転写抑制因子としての性状の解明とAhRR遺伝子の転写調節メカニズムの解明によって、外来異物代謝系において、転写レベルでの負のフィードバックメカニズムが存在することが証明された。ほぼ同様のフィードバックメカニズムが少し遅れて、低酸素ストレス応答に関与するPASドメインをもつ転写因子、HIF-1α、HLF、IPASにおいても存在することが報告された。また、少し異なったメカニズムであるが、PASタンパク質であるClock、Per、Arnt3(BMAL1)が関与するサーカディアンリズムの転写調節において、存在することが報告されている。これらの結果から、PASタンパク質をもつ転写因子による調節には、同様の負のフィードバック機構が存在することが予想され、一般化が行えるのではないかと考えられる。PASタンパク質はバクテリアから哺乳類まで幅広く存在し、センサータンパク質として、転写因子として機能している。おそらく、このフィードバック機構は進化の過程で保存されてきたと考えられる。

CYP1A2エンハンサーに対するAhR-Arntへテロダイマーが、コアクティベーターとして機能することは、従来からの直接DNAに結合する転写メカニズ

ムにプラスするAhRの転写活性化機構であり、今後このメカニズムによる遺伝子の例が多数報告されることが予想される。AhRの転写活性化機構の幅を広げたことになり、ダイオキシン類を始めとする環境汚染物質で転写が活性化、抑制される遺伝子を増やす巧妙なメカニズムと考えられる。

AhRは組織から大量に得ることが難しく、また、微生物で合成することも不溶性になることから、三次元構造の解明は困難であった。ここで報告した、Arntと大腸菌で共発現する方法は、飛躍的にAhRの水溶性を増加し、大量に得ることができる。現在の方法ではプロテアーゼによるAhRの分解が起こり、マイクロヘテロジェニティーを持っているが、発現領域を変えることにより、この問題をクリアーすれば、Arntとのダイマーの結晶化も夢ではない。AhRの結晶構造解析、特にリガンド結合領域の三次構造の解明は、基礎的な分子生物学的興味があるばかりでなく、環境汚染物質の毒性予想にも大いに役立つと考えられる。

4. 研究実施体制

(1)体制

AhR の機能調節 (藤井) グループ 筑波大学 先端学際領域研究センター AhR と AhRR の機能等を担当 P450 と代謝(鎌滝) グループ 北海道大学大学院薬学研究科 代謝分析学講座 内分泌かく乱物質の代謝等を担当 ダイオキシンと胸腺(菅野)グループ 広島大学大学院医歯薬学総合研究科 創生医科学専攻探索医科学講座免疫学研究室 研究代表者 胸腺縮退のメカニズム等を担当 ダイオキシンと発生・生殖(山下)グループ 広島大学大学院医歯薬学総合研究科 創生医科学専攻探索医科学講座免疫学研究室 子宮内膜症等の原因追究を担当 AhRR、AhR/Nfr2 欠失動物の作製と機能解析 (山本・本橋) グループ 筑波大学 先端学際領域研究センター AhRR、AhR/Nfr2 欠失動物の作製を担当 AhR の作用メカニズム (十川) グループ 東北大学大学院生命科学研究科 分子生命科学分野遺伝子システム学講座 遺伝子調節分野

AhR の遺伝子発現メカニズムを担当

(2)メンバー表

① AhR機能調節グループ

氏 名	所属	役職	研究項目	参加時期
藤井 義明	筑波大学先端 学際領域研究 センター	客員教授	研究班の総括 AhRR ノックアウトマウス	平成11年1月~ 平成15年12月
三村 純正	筑波大学先端 学際領域研究 センタ-	助手	薬物投与による遺伝 子発現の調節機構	平成14年4月~ 平成15年12月
武山健一	東京大学分子細胞生物学研究所	助手	AhRと核内ステロイド ホルモン受容体の相 互作用	平成11年6月~ 平成15年12月
Katarina Gradin	東北大学大学 院生命科学研 究科 (兼務 理学研 究科)	CREST 研究員	薬物投与による遺伝 子発現の調節機構	平成12年1月~ 平成13年5月
舛廣 善和	東京大学分子細胞生物学研究所	科技団 研究員		平成11年6月~ 平成13年3月
今高 寛晃	東北大学大学院 生命科学研究科	CREST 研究員		平成13年8月~ 平成14年3月
森大輔	東北大学大学院理学研究科	CREST 研究員	AhRRノックアウトマ ウスの機能解析	平成12年4月~ 平成15年5月
王 鋒	東北大学大学院 生命科学研究科	博士 研究員	AhRノックアウトマウ スの機能を解析	平成12年4月~ 平成12年6月
入江 美紀	東北大学大学 院生命科学研 究科 (兼務 理学研 究科)	CREST研 究補助員	研究チーム事務	平成11年1月~ 平成14年3月
鈴木 晶子	東北大学大学院理学研究科	CREST研 究補助員	研究チーム事務	平成11年4月~ 平成11年7月
根本 洋子	筑波大学先端学 際領域研究セン ター	CREST研 究補助員	研究チーム事務	平成14年4月~ 平成15年12月
小川 智子	東京大学大学院 農学生命科学研 究科	特別研究 学生	核内エストロゲン受 容体に対する内分泌 撹乱物質の作用	平成12年4月~ 平成15年12月
朝比奈敬文	東京大学大学 院農学生命科 学研究科	院生		平成12年4月~ 平成13年3月

細谷	朋方	東北大学大学院 理学研究科	院生		平成12年4月~ 平成13年3月
山下	年晴	東北大学大学院 理学研究科	院生	Arnt2ノックアウトマウスの機能解析	平成12年4月~ 平成15年3月
馬場	崇	東北大学大学院理学研究科	院生	AhRR遺伝子発現のメ カニズム	平成12年4月~ 平成15年3月
葛西	崇夫	東北大学大学院 生命科学研究科	院生	Arnt2、AhRRのノック アウトマウスの作製 と解析	平成13年4月~ 平成14年3月
大島	基彦	筑波大学先端学 際領域研究セン ター	院生	AhRRのユビキチン化 による分解機構の解 析	平成13年4月~ 平成15年12月
大竹	史明	東京大学大学院 農学生命科学研 究科	院生	核内エストロゲン受 容体に対する内分泌 撹乱物質の作用	平成13年4月~ 平成15年12月
関根	弘樹	筑波大学先端学 際領域研究セン ター	院生	①研究データの収集、 解析 ②実験器具の 洗浄	平成15年4月~ 平成15年12月

② P450と代謝グループ

氏名 所属 役職 研究項目 参加時期 鎌滝 哲也 北海道大学大学院薬学研究科 教授 内分泌かく乱物質応 平成11年1月~平成15年12月 有吉 範高 北海道大学大学院薬学研究科 助教授 平成11年1月~平成13年3月 山崎 浩史 北海道大学大学院薬学研究科 助教授 AhR標的遺伝子の探索 平成14年4月~平成15年12月 高橋 芳樹 北海道大学大学院薬学研究科 助手 AhR標的遺伝子の探索 平成11年1月~平成14年3月 藤田 健一 北海道大学大学院薬学研究科 助手 ダイオキシン類のCYP 平成13年4月~平成14年3月 藤枝 正輝 北海道大学大学院薬学研究科 助手 ダイオキシン類のCYP 平成14年4月~平成15年12月					
特別	氏 名	所 属	役職	研究項目	参加時期
一	鎌滝 哲也		教授	答性の薬物代謝酵素	, , , , , , , , , , , , , , , , , , , ,
高橋 芳樹 北海道大学大学 助手 AhR標的遺伝子の探索 平成11年1月~ 平成14年3月 藤田 健一 北海道大学大学 助手 ダイオキシン類のCYP 平成13年4月~ 平成14年3月 藤枝 正輝 北海道大学大学 助手 ダイオキシン類のCYP 平成14年3月 平成14年4月~ 平成	有吉 範高		助教授		
藤田 健一 北海道大学大学 助手 ダイオキシン類のCYP 平成13年4月~	山崎 浩史		助教授	AhR標的遺伝子の探索	
院薬学研究科	高橋 芳樹		助手	AhR標的遺伝子の探索	
为 人 五	藤田健一		助手		
	藤枝 正輝		助手		, , , , , , , , , , , , , , , , , , , ,

③ ダイオキシンと胸腺グループ

	ファこ河がノ	-		
氏 名	所 属	役職	研究項目	参加時期
菅野 雅元	広島大学大学院 医歯薬学総合研 究科 創生医科 学専攻 探索医 科学講座 免疫 学研究室	教授	ダイオキシンによる 胸腺萎縮の分子生物 学的解析および研究 の全体計画策定	平成11年1月~ 平成15年12月
菅野理恵子	広島大学大学院 医歯薬学総合研 究科 創生医科 学専攻 探索医 科学講座 免疫 学研究室	研究 補助員	マウス遺伝学的解析、 生化学的解析	平成11年1月~ 平成15年12月
神安雅哉	広島大学医学部 免疫学寄生虫学 講座	助手		平成11年1月~ 平成13年3月
石原 浩人	広島大学大学院 医歯薬学総合研究科 創生医科 学専攻 探索医 科学講座 免疫 学研究室	助手	免疫遺伝学的解析	平成11年1月~ 平成15年12月
井上 洋子	広島大学大学院 医歯薬学総合研究科 創生医科 学専攻 探索医 科学講座 免疫 学研究室	教務員	胸腺細胞のフローサイトメトリー解析、分子生物学的解析、マイクロアレイ解析	平成11年1月~ 平成15年12月
坂井るり子	広島大学大学院 医歯薬 学総生医科 学専 類生医科 学専 探 発 学 学 等 等 等 等 等 等 の の の の の の の の の の の の	院生	胸腺細胞のフローサイトメトリー解析、骨髄の造血幹細胞解析	平成11年4月~ 平成15年3月
梶梅 輝之	広島大学大学院 医歯薬学総合研 究科 創生医科 学専攻 探索医 科学講座 免疫 学研究室	院生	骨髄の造血幹細胞解析、骨髄移植実験系の確立	平成12年4月~ 平成15年3月
宮崎 正輝	広島大学大学院 医歯薬学総合研 究科 創生医科 学専攻 探索医 科学講座 免疫 学研究室	院生	樹状細胞系を用いた 解析	平成13年4月~ 平成15年3月

④ ダイオキシンと発生・生殖グループ

氏 名	ii. E	役 職	加龙百日	参加時期
氏 名	所 属	1文 40	研究項目	参加时期
山下 敬介	広島大学大学院	助教授	精巣毒性発現機構グ	平成11年1月~
	医歯薬学総合研究制		ループ総括	平成15年12月
	究科 解剖学・発 生生物学研究室			
安田 峯生	広島国際大学保	教授	発生毒性発現機構(実	平成11年1月~
	健医療学部 臨		験は広島大学医学部	平成15年3月
	床工学科		で実施)	
岡村さおり	広島大学大学院	研究員	研究補助	平成11年1月~
	医歯薬学総合研 究科 解剖学·発			平成15年12月
	生生物学研究室			
松井 浩二	広島大学大学院	助手	子宮内膜症発症機構	平成11年1月~
	医歯薬学総合研			平成15年12月
	究科 解剖学・発 生生物学研究室			
長尾 哲二	(財) 食品薬品安	室長		平成11年1月~
	全センター 秦			平成12年3月
	野研究所			1 // - 1 - / 4
澁谷 徹	(財) 食品薬品安	室長		平成11年1月~
	全センター 秦			平成12年3月
	野研究所			
大森 啓充	広島大学大学院	博士研究	研究補助	平成11年4月~
	医歯薬学総合研 究科 解剖学·発	員		平成15年3月
	生生物学研究室			
高木 敏男	広島大学 医学	院生		平成11年4月~
	部 解剖学第一			平成12年3月
	講座			
森 直樹	広島大学 医学	院生		平成11年4月~
	部 解剖学第一講座			平成12年3月
ものかまれてい		沙 4	TT	亚宁11年4日
加納由香利	広島大学大学院 医歯薬学総合研	院生	研究補助	平成11年4月~
	究科 解剖学・発			平成15年3月
	生生物学研究室			
津間本裕一	広島大学大学院	院生	研究補助	平成11年4月~
	医歯薬学総合研 究科 解剖学·発			平成15年3月
	生生物学研究室			
向山 敦子	広島大学大学院	院生	研究補助	平成11年4月~
	医歯薬学総合研			平成15年3月
	究科 解剖学・発 生生物学研究室			
沖田 進司	広島大学大学院	院生	 研究補助	平成11年4月~
	医歯薬学総合研	,/u <u></u>	7. 2 u ma 24	平成11年4万 平成15年3月
	究科解剖学・発			1 4410-1-011
	生生物学研究室			

谷本 言	1/2/4 I I	広島大学大学院	院生	動物実験全般	平成15年4月~
		医歯薬学総合研 究科 解剖学·発			平成15年12月
		生生物学研究室			

⑤ AhRR,AhR/Nrf2欠失動物の作製と機能解析グループ

氏 名	所 属	役職	研究項目	参加時期
山本 雅之	筑波大学基礎医 学系	教授	研究班の総括	平成11年1月~ 平成15年3月
高橋智	筑波大学基礎医 学系	教授	Nrf2とAhRホモノック アウトマウスの解析	平成11年1月~ 平成14年3月
大根田 修	筑波大学基礎医 学系	助教授	bHLH-PAS蛋白質の機 能解析	平成14年4月~ 平成15年3月
小林麻己人	筑波大学基礎医 学系	講師	ゼブラフィッシュの Nrf2とAhRの活性化機 構の解析	平成11年1月~ 平成15年3月
伊東健	筑波大学基礎医 学系	講師	Nrf2の活性化機構の解析	平成11年1月~ 平成15年3月
本橋ほづみ	筑波大学基礎医 学系	講師	研究の総括	平成14年4月~ 平成15年12月
大根田絹子	筑波大学基礎医 学系	講師	bHLH-PAS蛋白質の機 能解析	平成15年4月~ 平成15年12月
小林 聡	筑波大学基礎医 学系	講師	Nrf2とAhRの活性化機 構の解析	平成15年4月~ 平成15年12月
若林 伸直	筑波大学基礎医 学系	研究員	Keap1ノックアウトマ ウスの作製	平成11年1月~ 平成14年3月
日田安寿美	筑波大学基礎医 学系	研究員	AhRの活性化機構の解析	平成15年4月~ 平成15年12月
金子 直美	筑波大学基礎医 学系	CREST 技術員	遺伝子改変マウスの 組織標本の作製	平成11年4月~ 平成15年12月
古堅 久子	筑波大学基礎医 学系	CREST 技術員	研究補助	平成13年4月~ 平成15年10月
川合 玲子	筑波大学基礎医 学系	CREST 技術員	マウス遺伝学実験の補助	平成14年5月~ 平成15年12月

原田	伸彦	筑波大学基礎医 学系	*	AhR及びNrf2ノックア ウトマウスの解析	平成15年4月~ 平成15年12月
					1 /4/410 12/1

⑥ AhRの作用メカニズムグループ

氏 名	所 属	役職	研究項目	参加時期
十川和博	東北大学大学院 生命科学研究科 (兼務 理学研 究科)	教授	研究班の総括 AhRR の標的遺伝子の探索	平成11年1月~ 平成15年12月
菊池 康夫	東北大学大学院 生命科学研究科 (兼務 理学研 究科)	助教授	AhRのE.coliでの発現	平成11年1月~ 平成15年12月
阿部比佐久	東北大学大学大学院理学研究科	技官	AhRの酵母での発現	平成11年1月~ 平成15年12月
相川 道子	東北大学大学院 生命科学研究科 (兼務 理学研 究科)	CREST研 究補助員	動物飼育と生化学的 実験の補助	平成11年1月~ 平成15年12月
沼山 恵子	東北大学大学大学院理学研究科	学振特別 研究員	CYP1A2の外来異物に よる誘導機構	平成12年4月~ 平成15年3月

⑦ SHR, AhR 及び転写因子間相互作用と内分泌撹乱グループ

氏	名	所属	役職	研究項目	参加時期
梅園	和彦	京都大学大学院生命科学研究科	教授		平成11年1月~ 平成11年4月
橋本	主税	京都大学大学院生命科学研究科	助手		平成11年1月~ 平成11年4月
原	健二	京都大学大学院生命科学研究科	助手		平成11年1月~ 平成11年4月

5. 研究期間中の主な活動

(1)ワークショップ・シンポジウム等

年月日	名称	場所	参加人数	概要
1999, 8, 16	平成11年度藤井チーム研究打合せ	"内分泌 かく乱物 質"渋谷研 究事務所	12	
2000, 8, 24	平成12年度藤井チーム研究打合せ	"内分泌 かく乱物 質"渋谷研 究事務所	12	
2001, 8, 13	平成13年度藤井チーム研究打合せ	"内分泌 かく乱物 質"渋谷研 究事務所	12	
2002, 8, 29	平成14年度藤井チーム研究打合せ	"内分泌かく乱物質"渋谷研 究事務所	12	
2003, 8, 23	平成15年度藤井チーム研究打合せ	"内分泌 かく乱物 質"渋谷研 究事務所	12	

(2)招聘した研究者等

氏名(所属、役職)	招聘の目的	滞在先	滞在期間
Katarina Gradin , Ph.D. Laboratory of Molecular Biology Department of Cell and Molecular Biology (CMB) Karolinska Institutet	質」藤井プロジェ	科	

6. 主な研究成果物、発表等

(1) 論文発表 (国内 件、海外 172 件)

Wakabayashi, N., Itoh, K., Wakabayashi, J., Motohashi, H., Noda, S., Takahashi, S., Imakado, S., Kotsuji, T., Otsuka, F., Roop, D.R., Harada, T., Engel, J.D. and Yamamoto, M. *Keap1*-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. *Nature Genetics*, in press

Onodera, K., Shavit, J. A., Motohashi, H., Katsuoka, F., Akasaka, J-e., Engel, J. D. and Yamamoto, M. Characterization of the murine mafF gene. *J. Biol. Chem.* in press

Itoh, K., Mochizuki, M., Ishii, Y., Ishii, T., Shibata, T., Kawamoto, Y., Kelly, V., Sekizawa, K., Uchida, K. and Yamamoto, M. Transcription factor Nrf2 regulates inflammation by mediating the effect of 15-deoxy-^{12,14}-prostaglandin J₂. *Mol. Cell. Biol.* in press

Sato, T., Matsumoto, T., Kawano, H., Watanabe, T., Uematsu, Y., Sekine, K., Fukuda, T., Aihara, K., Krust, A., Yamada, T., Nakamichi, Y., Yamamoto, Y., Nakamura, T., Yoshimura, K., Yoshizawa, T., Metzger, D., Chambon, P., Kato, S.: Brain masculinization requires androgen receptor function. *Proc. Natl. Acad. Sci. USA*, 2003 (in press).

Endo, I., Inoue, D., Mitsui, T., Umaki, Y., Akaike, M., Yoshizawa, T., Kato, S., Matsumoto, T.: Deletion of vitamin D receptor gene in mice results in abnormal skeletal muscle development with deregulated expression of myoregulatory transcription factors. *Endocrinology*, 2003 (in press).

WuQiang, F., Yanase, T.,Yin, W., Kawate, H., Saitoh, M., Oba, K., Nomura, M., Okabe, T., Goto, K., Yanagisawa, J., Kato, S., Takayanagi, R., Nawata, H.: Protein kinase A potentiates Ad4BP/SF-1 transactivation by re-integrating the subcellular dynamic interactions of the nuclear receptor with its cofactors, GCN5/TRRAP, and suppressor, DAX-1: a laser confocal imaging study in living KGN cells. *Mol Endocrinol.*, 2003 (in press).

Inoue H, Kanno R, Sakai R, Okamura S, Ninomiya Y, Yamashita KH and Kanno M After Activation by 2,3,7,8-Tetrachlorodibenzo-*p*-Dioxin, AhR Induces Developmental Defect in DN3 Thymocyte and Caspase-independent Cell Death, *J.Immunol*.

Kajiume T, Ninomiya Y, Ishihara H, Kanno R, and Kanno MThe *Polycomb* group gene *mel-18* modulates the self-renewal activity and cell-cycle status of hematopoietic stem cells by controlling *Hoxb4* expression, *Exp.Hematol*

Kikuchi Y, Ohsawa S, Mimura J, Ema M, Takasaki C, Sogawa K, Fujii-Kuriyama Y., Heterodimers of bHLH-PAS Protein Fragments Derived from AhR, AhRR, and Arnt Prepared by Co-Expression in Escherichia coli: Characterization of Their DNA Binding Activity and Preparation of a DNA Complex. *J. Biochem.*, **134**, 83-90 (2003)

Junsei Mimura, Yoshiaki Fujii-Kuriyama, Functional role of AhR in the expression of toxic effects by TCDD, *Bioch. Biophy. Acta*, **1619**, 263-268 (2003)

Itoh, K., Wakabayashi, W., Katoh, Y., Ishii, T., O'Connor, T. and Yamamoto, M. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. *Genes Cells*, **8**: 379-391 (2003)

Junsei Mimura, Yoshiaki Fujii-Kuriyama, Functional role of AhR in the expression of toxic effects by TCDD, *Bioch. Biophy. Acta*, **1619**, 263-268 (2003)

Suzawa, M., Takada, I., Yanagisawa, J., Ohtake, F., Ogawa, S., Yamauchi, T., Kadowaki, T., Takeuchi, Y., Shibuya, H., Gotoh, Y., Matsumoto, K., Kato, S.: Inhibition of adipogenesis by cytokines with suppression PPAR function through the TAK1/TAB1-NIK mediated cascade. *Nature Cell Biol.*, **5**: 224-230 (2003)

Kenji Toide, Hiroshi Yamazaki, Rikako Nagashima, Keisuke Itoh, Shunsuke Iwano, Yoshiki Takahashi, Shaw Watanabe and Tetsuya Kamataki: Aryl hydrocarbon hydroxylase represents CYP1B1, and not CYP1A1, in human freshly isolated white cells: Trimodal distribution of Japanese population according to induction of CYP1B1 mRNA by environmental dioxins, *Cancer Epidemiol. Biomarkers Prev.*, 12: 219-222 (2003)

Fujisaki S, Ninomiya Y, Ishihara H, Miyazaki M, Kanno R, Asahara T, and Kanno M. Dimerization of the Polycomb-group protein Mel-18 is regulated by PKC phosphorylation. *Biochem. Biophys. Res. Commun.*, **300**: 135-140 (2003)

Sakai R, Kajiume T, Inoue H, Kanno R, Miyazaki M, Ninomiya Y, and Kanno M. TCDD treatment eliminates the long-term reconstitution activity of hematopoietic stem cells. *Toxicol. Sci.*, **72**, 84-91 (2003)

Masanobu Morita, Akira Kobayashi, Toshiharu Yamashita, Tomomasa Shimanuki, Osamu Nakajima, Satoru Takahasi, Shiro Ikegami, Kaoru Inokuchi, Keisuke Yamashita, Masayuki Yamamoto and Yoshiaki Fujii-Kuriyama. Functional analysis of basic transcription element binding protein (BTEB) by gene targeting technology. *Mol. Cell. Biol.*, **23**: 2489-2500 (2003)

Masanobu Morita, Osamu Ohneda, Toshiharu Yamashita, Satoru Takahashi, Norio Suzuki, Osamu Nakajima, Shimako Kawauchi, Masatsugu Ema, Shigeki Shibahara, Tetsuo Udono, Koji Tomita, sMakoto Tamai, Kazuhiro Sogawa, Masayuki Yamamoto and Yoshiaki Fujii-Kuriyama. HLF/HIF2 is a key factor in retinopathy of prematurity in association with erythropoietin. *EMBO J.*, 22: 1134-1146 (2003)

Daisuke Mori, Naoko Okuro, Yoshiaki Fujii-Kuriyama, Kazuhiro Sogawa, Gene structure and promoter analysis of the rat BTEB2 gene. *Gene*, **304**: 163-170 (2003)

Kitagawa, H., Fujiki, R., Yoshimura, K., Mezaki, Y., Uematsu, Y., Matsui, D., Ogawa, S., Unno, K., Okubo, M., Tokita, A., Nakagawa, T., Ito, T., Ishimi, Y., Nagasawa, H., Matsumoto, T., Yanagisawa, J., Kato, S.: Promoter targeting of a nuclear receptor with an ATP-dependent chromatin remodeling complex related to Williams syndrome. *Cell*, 113, 905-917 (2003)

Ohtake, F., Takeyama, K., Matsumoto, T., Kitagawa, H., Yamamoto, Y., Nohara, K., Tohyama, C., Krust, A., Mimura, J., Chambon, P., Yanagisawa, J., Fujii-Kuriyama, Y., Kato, S.: Modulation of estrogen receptor signalin by an association with the activated dioxin receptor. *Nature*, **423**, 545-550 (2003)

- Kawano, H., Sato, T., Yamada, T., Matsumoto, T., Sekine, K., Watanabe, T., Nakamura, T., Fukuda, T., Yoshimura, K., Yoshizawa, T., Aihara, K., Yamamoto, Y., Nakamichi, Y., Metzger, D., Chambon, P., Nakamura, K., Kawaguchi, H., Kato, S.: Suppressive function of androgen receptor in bone resorption. *Proc. Natl. Acad. Sci. USA*, 100, 9416-9421 (2003)
- Ishitani, K., Yoshida, T., Kitagawa, H., Ohta H., Nozawa, S., Kato, S.: p54^{nrb} acts as a transcriptional coactivator for activation function 1 of the human androgen receptor. *Biochem. Biophys. Res. Commun.*, **306**, 660-665 (2003)
- Nakamichi, Y., Shukunami, C., Yamada, T., Aihara, K., Kawano, H., Sato, T., Nishizaki, Y., Yamamoto, Y., Shindo, M., Yoshimura, K., Kawaguchi, H., Hiraki, Y., Kato, S.: Chondromodulin-I (ChM-I) is a bone remodeling factor. *Mol. Cell. Biol.*, 23, 636-644 (2003)
- Sato, T., Matsumoto, T., Yamada, T., Watanabe, T., Kawano, H., Kato, S.: Late onset of obesity in male androgen receptor-deficient (ARKO) mice. *Biochem. Biophys. Res. Commun.*, **300**, 167-171 (2003)
- Matsumoto, T., Takeyama, K., Sato, T., Kato, S.: Androgen receptor functions from reverse genetic models. *J. Steroid Biochem. Mol. Biol.*, **85**, 95-99 (2003)
- Taketani, Y., Nomoto, M., Yamamoto, H., Isshiki M., Morita, K., Arai, H., Miyamoto, K., Kato, S., Takeda E.: Increase in IP3 and intracellular Ca2+ induced by phosphate depletion in LLC-PK1 cells. *Biochem. Biophys. Res. Commun*, **305**, 287-291 (2003)
- Fujishima, T., Kittaka, A., Yamaoka, K., Takeyama, K., Kato, S., Takayama, H.: Synthesis of 2, 2-dimethyl-1, 25-dihydroxyvitamin D3: A-ring structural motif that modulates interactions of vitamin D receptor with transcriptional coactivators. *Org. Biomol. Chem.*, **1**, 1863-1869 (2003)
- Masuyama, R., Nakaya, Y., Katsumata, S., Kajita, Y., Uehara, M., Tanaka, S., Sakai, A., Kato, S., Nakamura, T., Suzuki, K.: Dietary calcium and phosphorus ratio regulates bone mineralizaiton and turnover in vitamin D receptor knokckout mice by affecting intestinal calcium and phosphorus absorption. *J. Bone Miner. Res.*, 18, 1217-1226 (2003)
- Fujisaki S, Ninomiya Y, Ishihara H, Miyazaki M, Kanno R, Asahara T, and Kanno M. Dimerization of the Polycomb-group protein Mel-18 is regulated by PKC phosphorylation. *BBRC* 300:135-140 (2003)
- Noda, S., Harada, N., Hida, A., Fujii-Kuriyama, Y., Motohashi, H. and Yamamoto, M. Gene expression of detoxifying enzymes in AhR and Nrf2 compound null mutant mouse. *Biochem. Biophys. Res. Commun.* 303, 105-111 (2003)
- Itoh, K., Wakabayashi, W., Katoh, Y., Ishii, T., O'Connor, T. and Yamamoto, M. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. *Genes Cells* **8**, 379-391 (2003; cover)
- Katsuoka, F., Motohashi, H., Tamagawa, Y., Kure, S., Igarashi, K., Engel, J.D. and Yamamoto, M. Small Maf compound mutants display CNS neuronal degeneration, aberrant transcription and Bach protein mislocalization coincident with myoclonus and abnormal startle response. *Mol. Cell. Biol.* 23, 1163-1174 (2003)

Mimura, J. & Y. Fujii-Kuriyama. Regulatory roles of AhR. *Env. Sci.*, 9: 71-81 (2002)

Oikawa, K., Ohbayashi, T., Mimura, J., Fujii-Kuriyama, Y., Teshima, S., Rokutan, K., Mukai, K. & Kuroda, M. Dioxin stimulates synthesis and secretion of lgE-dependent histamine-releasing factor. *Biochem. Biophys. Res. Commun.*, **290**: 984-987 (2002)

Gradin K., Takasaki C., Fujii-Kuriyama Y., Sogawa K. The Transcriptional Activation Function of the HIF-like Factor Requires Phosphorylation at a Conserved Threonine. *J Biol Chem.*, **277**: 23508-23514 (2002)

F. Wang, H. Sekine, Y. Kikuchi, C. Takasaki, C. Miura, H. Okuda, T. Shuin, Y. Fujii-Kuriyama, and K. Sogawa. HIF-1a-proryl Hydroxylase: Molecular Target of Nitric Oxide in the Hypoxic Signal Transduction Pathway. *Biochem. Biophys. Res. Commun.*, **295**: 657-662 (2002)

Yanagisawa, J., Kitagawa, H., Yanagida, M., Wada, O., Ogawa, S., Nakagomi, M., Oishi, H., Yamamoto, Y., Nagasawa, H., MacMahon, S. B., Cole, M. D., Tora, L., Takahashi, N., Kato, S.: Nuclear receptor function requires a TFTC-type histone acetyl transferase complex. *Mol. Cell.*, 9: 553-562 (2002)

Takeyama, K., Ito, S., Yamamoto, A., Tanimoto, H., Furutani, T., Kanuka, H., Miura, M., Tabata, T., Kato, S.: Androgen-dependent neurodegeneration by polyglutamine-expanded human androgen receptor in drosophila. *Neuron*, **35**: 55-864 (2002)

Kato, S., Yoshizawa, T., Kitanaka, S., Murayama, A., Takeyama, K.: Molecular genetics of vitamin D-dependent hereditary rickets. *Hormone Research*, **57**: 73-78 (2002)

Matsui, D., Sakari, M., Sato, T., Murayama, A., Takada, I., Kim, M., Takeyama, K., Kato, S.: Transcriptional regulatin of the mouse steroid 5alpha-reductase type II gene by progesterone in brain. *Nucleic Acids Res.*, **30**: 1387-1393 (2002)

Michihiro Chida, Noritaka Ariyoshi, Tsuyoshi Yokoi, Nobuo Nemoto, Makoto Inaba, Moritoshi Kinoshita and Tetsuya Kamataki: New allelic arrangement *CYP2D6*36x2* found in a Japanese poor metabolizer of debrisoquine, *Pharmacogenetics*, **12**: 659-662 (2002)

Satoshi Daigo, Yoshiki Takahashi, Masaki Fujieda, Noritaka Ariyoshi, Hiroshi Yamazaki, Wasaburo Koizumi, Satoshi Tanabe, Katsunori Saigenji, Seiko Nagayama, Kazumasa Ikeda, Yasuhiko Nishioka and Tetsuya Kamataki: A novel mutant allele of the *CYP2A6* gene (*CYP2A*11*) found in a cancer patient who showed poor metabolic phenotype toward tegafur, *Pharmacogenetics*, **12**(4): 299-306 (2002)

Takeshi Ozeki, Yoshiki Takahashi, Kazuo Nakayama, Masato Funayama, Kazuo Nagashima, Takako Kodama and Tetsuya Kamataki: Hepatocyte nuclear factor(HNF) -4• and HNF-1•as casual factors of interindividual difference in the expression of human dihydrodiol dehydrogenase(DD)4mRNA in human livers, *Pharmacogenetics*, 13: 49-53 (2002)

Kazuma Kiyotani, Masaki Fujieda, Hiroshi Yamazaki, Tsutomu Shimada, F. Peter Guengerich, Andrew Parkinson, Kazuko Nakagawa, Takashi Ishizaki and Tetsuya Kamataki: Twenty one novel single nucleotide polymorphisms (SNPs) of the *CYP2A6*

gene in Japanese and Caucasians, Drug Metabol. Pharmacokin., 17(5): 482-487 (2002)

Takeshi Ozeki, Yoshiki Takahashi, Kazuo Nakayama, and Tetsuya Kamataki: Hepatocyte nuclear factor(HNF)-4•, HNF-1 and vHNF-1 regulate the cellspecific expression of the human dihydrodiol dehydrogenase(*DD*)4/AKR1C4 gene, *Arch. Biochem. Biophys.*, **405**: 185-190 (2002)

Kazuma Kiyotani, Hiroshi Yamazaki, Masaki Fujieda, Satoshi Daigo, Soisungwan Satarug, Pailin Ujjin, and Tetsuya Kamataki: Novel mutations of the *CYP2A6* gene in a Thai population with lowered capacity of coumarin 7-hydroxylation, *Drug Metabol. Pharmacokin.*, **17**(2):SNP1(161)-SNP3(163) (2002)

Zeki Topcu, Itsuo Chiba, Masaki Fujieda, Toshiyuki Shibata, Noritaka Ariyoshi, Hiroshi Yamazaki, Figen Sevgican, Malsantha Muthumala, Hiroshi Kobayashi, and Tetsuya Kamataki: *CYP2A6* gene deletion reduces oral cancer risk in betel quid chewers in Sri Lanka, *Carcinogenesis*, **23**(4): 595-598 (2002)

Miyazaki, K., Inoue, H., Onai, N., Ishihara, H., and Kanno, M. Chemokine-mediated thymopoiesis is regulated by a mammalian Polycomb group gene, mel-18. *Immunol. Lett.*, **80**: 139-43 (2002)

Keisuke Yamashita, Fine structural aspects of the urothelium in the mouse ureter with special reference to cell kinetics. *Hiroshima J. of Med. Sci.*, **51** (2): 41-48 (2002)

Yuichi Tsumamoto, Hidetoshi Yamashita, Masaya Takumida, Koji Okada, Satoshi, Mukai Makoto Shinnya, Keisuke Yamashita, Mineo Yasuda, and Hiromu K. Mishima. In situ localization of nitric oxide syntase and direct evidence of NO production in rat retinal ganglion cells. *Brain Res.*, **933**(2): 118-129 (2002)

Kusunoki, H., Motohashi, H., Katsuoka, F., Morohashi, A., Yamamoto, M. and Tanaka, T. Solution structure of the DNA-binding domain of MafG. *Nature Str. Biol.*, 9: 252-256 (2002)

Dinkova-Kostova, A. T., Holtzclaw, W. D., Cole, R. N., Itoh, K., Wakabayashi, N., Katoh, Y., Yamamoto, M. and Talalay, P Direct evidence that sulfhydryl group of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. *Proc. Natl. Acad. Sci. USA*, **99**: 11908-11913 (2002)

Kobayashi, M., Itoh, K., Suzuki, T., Osanai, H., Nishikawa, K., Katoh, Y., Takagi, Y. and Yamamoto, M, Identification of the interactive interface and phylogenic conservation of the Nrf2-Keap1 system. *Genes Cells*, 7: 807-820 (2002)

Katsuoka, F., Motohashi, H., Tamagawa, Y., Kure, S., Igarashi, K., Engel, J.D. and Yamamoto, M. Small Maf compound mutants display CNS neuronal degeneration, aberrant transcription and Bach protein mislocalization coincident with myoclonus and abnormal startle response. *Mol. Cell. Biol.*, 23: 1163-1174 (2002)

Muto A, Tashiro S, Tsuchiya H, Kume A, Kanno M, Ito E, Yamamoto M, Igarashi K. Activation of Maf/AP-1 Repressor Bach2 by Oxidative Stress Promotes Apoptosis and Its Interaction with Promyelocytic Leukemia Nuclear Bodies.. *J Biol Chem.* **277**:20724-20733 (2002)

Kwak, M.K., Itoh, K., Yamamoto, M. and Kensler, T. Regulation of the expression of

Nrf2 transcription factor by cancer chemopreventive agents through antioxidant response element (ARE)-like sequences in its proximal promoter region. *Mol. Cell. Biol.* 22, 2883-2892 (2002)

Cho, H.Y., Jedlika, A.E., Reddy, S.P.M., Zhang, L.Y., Yamamoto, M., Kensler, T.W. and Kleeberger, S.R. Linkage analysis of susceptibility to hyperoxic lung injury: role of Nrf2 as a candidate gene. *Am. J. Res. Cell Mol. Biol.* **26**, 175-182 (2002)

Morimitsu, Y., Nakagawa, Y., Hayashi, H., Fujii, H., Kumagai, T., Nakamura, Y., Osawa, T., Horio, F., Itoh, K., Iida, K., Yamamoto, M. and Uchida, K. A sulforaphane analogue that potentially activates the Nrf2-dependent detoxification pathway. *J. Biol. Chem.* 277, 3456-3463 (2002)

Katoh, Y., Itoh, K., Yoshida, E., Miyagishi, M., Fukamizu, A. and Yamamoto, M. Two domains of Nrf2 cooperatively bind CBP (CREB binding protein) and synergistically activate transcription. *Genes Cells* **6**, 857-868 (2002)

Watanabe, M., Yagagisawa, J., Kitagawa, H., Arao, Y., Suzawa, S., Kobayashi, Y., Tano, T., Yoshikawa, H., Masuhiro, Y., Kato, S. A subfamily of RNA-binding DEAD-box proteins acts as an estrogen receptor a coactivator through the N-terminal activation domain (AF-1) with an RNA coactivator, SRA. *EMBO J.*, **20**, 1341-1352 (2001)

Baba, T., Mimura, J., Gradin, K., Kuroiwa, A., Watanabe, T., Matsuda, Y., Inazawa, J., Sogawa, K., Fujii-Kuriyama, Y. Structure and expression of the Ah receptor repressor gene. *J. Biol. Chem.* **276**, 33101-33110 (2001)

Hosoya, T., Oda, Y., Takahashi, S., Morita, M., Ema, M., Yamamoto, M. & Fujii-Kuriyama, Y. Defective development of secretory neurons in the hypothalamus of Arnt2-knockout mice. *Genes to Cells* 6, 361-374 (2001)

Watanabe T, Imoto I, Kosugi Y, Fukuda Y, Mimura J, Fujii Y, Isaka K, Takayama M, Sato A, Inazawa J. Human arylhydrocarbon receptor repressor (AHRR) gene: genomic structure and analysis of polymorphism in endometriosis. *J Hum Genet* **46**(6), 342-6 (2001)

Oikawa K, Ohbayashi T, Mimura J, Iwata R, Kameta A, Evine K, Iwaya K, Fujii-Kuriyama Y, Kuroda M, Mukai K. Dioxin suppresses the checkpoint protein, MAD2, by an aryl hydrocarbon receptor-independent pathway. *Cancer Research*, **61**(15), 5707-5709 (2001)

Nukaya, M., Takahashi, Y., Gonzalez, F.J. & Kamataki, T. Aryl hydorocarbon receptor-mediated suppression of expression of the low molecular weight prekiningen gene in mice. *Biochem. Biophys. Res. Commun.* 14, 287(1), 301-304 (2001)

Tanaka T, Morita E, Mihara S, Kanno M, Yamamoto S. Identification of leukemia inhibitory factor as a potent mast cell growth-enhancing factor produced by mouse keratinocyte cell line, KCMH-1. Arch. *Dermatol Res* **293**(1-2), 18-25 (2001)

Akasaka T, van Lohuizen M, van der Lugt N, Mizutani-Koseki Y, Kanno M, Taniguchi M, Vidal M, Alkema M, Berns A, Koseki H. Mice doubly deficient for the Polycomb Group genes Mel18 and Bmi1 reveal synergy and requirement for maintenance but not initiation of Hox gene expression. *Development* 128(9), 1587-97 (2001)

Yamasaki M, Sasho T, Moriya H, Kanno M, Harada M, Kamada N, Shimizu E, Nakayama T, Taniguchi M. Extrathymic development of V alpha 11 T cells in placenta during pregnancy and their possible physiological role. *J Immunol*, **166**(12), 7244-9 (2001)

Sugihara, K., Kitamura, S., Yamada, T., Ohta, S., Yamashita, K., Masuda, M., Fujii-Kuriyama, Y. Aryl hydorocarbon receptor (AhR)-mediated induction of xanthine oxidase/xanthine dehydrogenase activity by 2.3.7.8-tetrachlorodibenzo-p-dioxin. *Biochem. Biophys. Res. Commun.* 281, 1093-1099 (2001)

Yamasaki, S., Ohmori, H., Yamashita, K., Yasuda, M. A morphometric study on postnatal development sciences *Hiroshima Journal of Medical Sciences* **50**, 53-60 (2001)

Horie, S., Yasuda, M. Alterations in palatal ruga gatterns in Jcl:ICR mouse fetuses from dams treated wht all-trans retinoic acid. *Hiroshima Journal of Medical Sciences* **51**, 17-25 (2001)

Ikemi, N., Otani, Y., Ikegami, T. & Yasuda, M. Palatal ruga anomaly induce by all-trans retinoic acid in the Crj:SD rat: possible warning sign of teratogenicity. Reproductive *Toxicology* **15**, 87-93 (2001)

Ishii, T.,toh, K.,Itoh, K., Akasaka, J., Yanagawa, T., Takahashi, S., Yoshida, H.,Bannai S. & Yamamoto, M. Induction of murine intestinal and hepatic peroxiredoxin MSP23 by dietary butylated hydroxyanisole. *Carcinogenesis* 21, 1013-1016 (2001)

Enomoto, A.,Itoh, K.,Nagaoshi, E., Haruta, J.,Kimura, T., O'Connor, T. & Yamamoto, M. High sensitivity of Nrf2 knockout mice t acetaminophen hepatotoxicity associated with decreased expression of ARE regulated drug metabolizing enzymes and antioxidant genes *Toxicol. Sci.* 59, 169-177 (2001)

Ramos-Gomez, M., Kwak, M., Dolan, P. M., Itoh, K., Yamamoto M., Talalay P., Kensler T. W. Sensitivity to carconogenesis is increased and chemoprotective efficacy of enzyme inducer is lost in nrf2 transcription factor-deficient mice. Proc. *Natl. Acad. Sci. USA* **98**, 3410-3415 (2001)

Kobayashi, M., Nishikawa, K. & Yamamoto, M. Hematopoietic regulatory domain of gata1 gene is positively regulated by GATA1 protein in zebrafish embryos. *Development* **128**(12), 2341-2350 (2001)

Kwak, MK., Itoh, K., Yamamoto, M., Sutter, TR. & Kensler, TW. Role of transcription factor Nrf2 in the induction of hepatic phase 2 and antioxidative enzymes in vivo by the cancer chemoprotective agent, 3H-1, 2-dimethiole-3-thione. *Mol. Med.* 7(2), 135-45 (2001)

Shimizu, R., Takahashi, S., Ohneda, K., Engel, J.D. and Yamamoto, M. In vivo requirements for functional GATA-1 domains during primitive and definitive erythropoiesis. *EMBO J.* **20**, 5250-5260 (2001)

Ogi, T., Mimura, J., Hikida, M., Fujimoto, H., Fujii-Kuriyama, Y. & Ohmori, H. Expression of human and mouse genes encoding polk: testis-specific developmental regulation and AhR-dependent inducible transcription *Genes to Cells* 6, 943-753 (2001)

Ikemi, N., Otani, Y., Ikegami, T. and Yasuda, M. Palatal ruga anomaly induce by all-trans-retinoic acid in the Crj: SD rat: possible warning sign of teratogenicity. *Reproductive Toxicology*, **15** (1), 87-93 (2001)

Watanabe, M., Yanagisawa, J., Kitagawa, H., Takeyama, K., Arao, Y., Suzawa, M., Kobayashi, Y., Ogawa, S., Yano, T., Yoshikawa, H., Masuhiro, Y., Kato, S.: A subfamily of RNA binding DEAD-box proteins acts as an estrogen receptor ecoactivator through the N-terminal activation domain (AF-1) with an RNA coactivator, SRA. *EMBO J.*, **20**, 1341-1352 (2001)

Kato, S.: Vitamin D 1 α -hydroxylase knockout mice as a hereditary rickets animal model. *Endocrinology*, **142**, 2734-2735 (2001)

Mezaki, Y., Yoshida, T., Yanagisawa, J., Kato, S.: N-terminal activation function is dominant in ligand-dependent transactivation of medaka estrogen receptor •in human cells. *Biochem. Biophys. Res. Commun.*, 289, 763-768 (2001)

Yagishita, N., Yoshizawa, T., Yamamoto, Y., Sekine, K., Uematsu, Y., Murayama, H., Nagai, Y., Krezel, W., Chambon, P., Matsumoto, T., Kato, S.: Aberrant growth plate development in VDR/RXR double-null mutant mice. *Endocrinology*, **142**, 5332-5341 (2001)

Kitanaka, S., Takeyama, K., Murayama, A., Kato, S.: The molecular basis of vitamin D-dependent rickets type I. *Endocrine J.*, **48**, 427-432 (2001)

Sasagawa, S., Kato, S.: A nuclear receptor screening method using a steroid receptor coactivator-1 fragment in a yeast two-hybrid system. *Anal. Biochem.*, **289**, 295-297 (2001)

Kato, S.: Estrogen receptor-mediated cross-talk with growth factor signaling pathways. *Breast Cancer*, **8**, 3-9 (2001)

Bhushan, A., Itoh, N., Kato, S., Theery, J. P., Czernichow, P., Bellusci, S., Scharfmann, R.: Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. *Development*. **128**, 5109-5117 (2001)

Yamauchi, T., Waki, H., Kamon, J. Murakami, K., Motojima, K., komeda, K., miki, H., Kubota, N., Terauchi, Y., Tsuchida, A., Tsuboyama-Kasaoka, N., Yamauchi, N., Ide, T., Hori, W., Kato, S., Fukuyama M., Akanuma, Y., Ezaki, O., Itai, A., Nagai, R., Kimura, S., Tobe, K., Kagechika, H., Shudo, K., Kadowaki, T.: Inhibitation of RXR and PRAR γ ameliorates diet-induced abesity and type2 diabates. *J. Clin. Invest.*, 108, 1001-1013 (2001)

Sawada, N., Sasaki, T., Kitanaka, S., Kato, S., Inouye, K.: Structure-function analysis of CYP27A1. studies on mutants from patients with vitamin D-dependent rickets type I (VDDR-I) and cerebrotendinous xanthomatosis (CTX). *Eur. J. Biochem.*, 268, 6607-6615 (2001)

Van Cromphaut, S. J., Dewerchin, M., Hoenderop, J. G. J., Stockmans, I., Van Herck, E., Kato, S., Bindels, R. J. M., Collen, D., Carmeliet, P., Bouillon, R., Carmeliet, G.: Doudenal calcium absorption in vitmin D receptor-knockout mice: functional and melecular aspects. *Proc. Natl. Acad. Sci. USA*, **98**, 13324-13329 (2001)

- Kallay, E., Pietschmann, P., Toyokuni, S., Bajna, E., Hahn, P., Mazzucco, K., Bieglmayer, C., Kato, S., Cross, H. S.: Characterization of a vitamin D receptor knockout mouse as a model of colorectal hyperproliferation and DNA damage. *Carcinogenesis*, **22**, 1429-1435 (2001)
- Yamamoto, Y., Wada, O., Suzawa, M., Yogiashi, Y., Yano, T., Kato, S., Yanagisawa, J.: A tamoxifen responsive estrogen receptor alpha mutant D351Y shows reduced tamoxifen-dependent interaction with corepressor complexes. *J. Biol. Chem.*, **276**, 42684-42691 (2001)
- Yahata, T., Shao, W., Endoh, H., Hur, J., Coser, K. R., Sun, H., Ueda, Y., Kato, S., Isselbacher, K. J., Brown, M., Shioda, T.: Selective coactivation of estrogen-dependent transcription by CITED1 CBP/p300-binding protein. *Genes Dev.*, **15**, 2598-2612 (2001)
- Inui, N., Murayama, A., Sasaki, S., Suda, T., Chida, K., Kato, S., Nakamura, H.: Correlation between 25-hydroxyvitamin D3 1-hydroxylase gene expression in alveolar macrophages and the activity of sarcoidosis. *Am. J. Med.*, **110**, 687-693 (2001)
- Um, M., Yamauchi, J., Kato, S., Manley, J. L.: Heterozygous Disruption of the TATA-Binding Protein Gene in DT40 Cells Causes Reduced cdc25B Phosphatase Expression and Delayed Mitosis. *Mol. Cell. Biol.*, 21, 2435-2448 (2001)
- Masuyama, R., Nakaya, Y., Tanaka, S., Tsurukami, H., Nakamura, T., Watanabe, S., Yoshizawa, T., Kato, S., Suzuki, K.: Dietary phosphorus restriction reverses the impaired bone mineralization in vitamin D receptor knockout mice. *Endocrinology*, **142**, 494-497 (2001)
- Tanaka, T., Morita, E., Mihara, S., Kanno, M. and Yamamoto, S. Identification of leukemia inhibitory factor as a potent mast cell growth-enhancing factor produced by mouse keratinocyte cell line, KCMH-1. *Arch Dermatol. Res.* 293: 18-25 (2001)
- Yoh, K., Itoh, K., Enomoto, A., Hirayama, A., Yamaguchi, N., Kobayashi, M., Morito, N., Koyama, A., Yamamoto, M. and Takahashi, S. Nrf2 deficient mouse: a novel model for lupus nephritis. *Kidney Int.* **60**, 1343-1353 (2001)
- Aoki, Y., Sato, H., Nishimura, N., Takahashi, S., Itoh, K. and Yamamoto, M. Accelerated DNA adducts formation in the lung of the Nrf2 knockout mouse exposed to diesel exhaust. *Toxicol. Appl. Pharmacol.* 173, 154-160 (2001)
- Ramos-Gomez, M., Kwak, M-K., Dolan, P. M., Itoh, K., Yamamoto, M., Talalay, P. and Kensler, T. W. Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. *Proc. Natl. Acad. Sci. USA* **98**, 3410-3415 (2001)
- Enomoto, A., Itoh, K., Nagayoshi, E., Haruta, J., Kimura, T., O'Connor, T., Harada, T. and Yamamoto, M. High sensitivity of Nrf2 knockout mice to acetoaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzyme and antioxidant genes. *Toxicol. Sci.* **59**, 169-177 (2001)
- Shimizu, Y., Nakatsuru, Y., Ichinose, M., Takahashi, Kume, Y.H., Mimura, J., Fujii-Kuriyama, Y. & Ishikawa, T. Benzo[a]pyrene carcinogenicity is lost in mice

- lacking the aryl hydrocarbon receptor. *Proc. Natl. Acad. Sci. USA.*, **97**, 779-782 (2000)
- Takahata, S., Ozaki, T., Mimura, J., Kikuchi, Y., Sogawa, K. & Fujii-Kuriyama, Y. Transactivation mechanisms of mouse clock transcription factors, mClock and mArnt3. *Genes to Cells*, **5**, 739-747 (2000)
- Kodera, Y., Takeyama, K., Murayama, A., Suzawa, M., Masuhiro, Y., Kato, S. Ligand-type specific interactions of peroxisome proliferator-activated receptor gamma with transcriptional coactivators. *J. Biol. Chem.*, **275**, 33201-33204 (2000)
- Kato, S., Kitanaka, S., Murayama, A., Takeyama, K. Missense mutations in 25(OH)vitamin D₃ 1-hydroxylase gene causes vitamin D dependent type I rickets. *Clin. Pediatr. Endocrinol.*, 9 (suppl. 14), 1-5 (2000)
- Kobayashi, Y., Kitamoto, T., Masuhiro, Y., Watanabe, M., Kase, T., Metzger, D., Yanagisawa, J., Kato, S. p300 Mediates functional synergism between AF-1 and AF-2 of estrogen receptor and by interacting directly with the N-terminal A/B domains. *J. Biol., Chem.*, 275, 15645-15651 (2000)
- Yanagi, Y., Masuhiro, Y., Mori, M., Yanagisawa, J., Kato, S. p300/CBP Acts as a coactivator of the cone-rod homeobox transcription factor. *Biochem. Biophys. Res. Commun.*, **269**, 410-414 (2000)
- Ishii, T., Itoh, K., Takahashi, S., Sato, H., Yanagawa, T., Katoh, Y., Bannai, S. and Yamamoto, M. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. *J. Biol. Chem.* 275, 16023-16029 (2000)
- Motohashi, H., Katsuoka, F., Shavit, J., Engel, J.D. and Yamamoto, M. Positive or negative MARE-dependent transcriptional regulation is determined by the abundance of small Maf proteins. *Cell* **103**, 865-875 (2000)
- Kato, S.: Molecular mechanism of transcriptional control by nuclear vitamin receptors. *British J. Nutrition*, **84** (suppl. 2), 229-233 (2000)
- Arao, Y., Kuriyama, R., Kayama, F., Kato, S.: A nuclear matrix-associated factor, SAF-B, interacts with specific isoforms of AUF1/hnRNP D. *Arch. Biochem. Biophys.*, **380**, 228-236 (2000)
- Kato, S., Masuhiro, Y., Watanabe, M., Kobayashi, Y., Takeyama, K., Endoh, H., Yanagisawa, J.: Molecular mechanism of a cross-talk between oestrogen and growth factor signalling pathways. *Genes to Cells*, **5**, 593-601 (2000)
- Kato, S.: The functin of vitamin D receptor in vitamin D action. *J. Biochem.*, 127, 717-722 (2000)
- Fuse, H., Kitagawa, H., Kato, S.: Characterization of transactivational property and coactivator mediation of rat mineralocorticoid receptor AF-1. *Mol. Endocrinol.*, **14**, 889-899 (2000)
- Tai, H., Kubota, N., Kato, S.: Involvement of nuclear receptor coactivator SRC-1 in estrogen-dependent cell growth of MCF-7 cells. *Biochem. Biophys. Res. Commun.*, **267**, 311-316 (2000)

- Kitanaka, S., Kato, S.: Vitamin D-dependent rickets type I and type II. *In* The Genetics of Osteoporosis and Metabolic Bone Disease, ed. *by M. J. Econs, Humana Press Inc., Totowa, NJ*, pp. 95-109 (2000)
- Kato, S., Kitanaka, S., Murayama, A., Takeyama, K.: Missense mutaions in 25(OH) vitamin D₃ 1-hydroxylase gene causes vitamin D dependent type I rickets. *Clin. Pediatr. Endcrinol.*, **9**, 1-5 (2000)
- Li, M., Indra, A. K., Warot, X., Brocard, J., Messaddeq, N., Kato, S., Metzger, D., Chambon, P.: Skin abnormalities generated by temporally-controlled RXR mutations in adult mouse epidermis. *Nature*, **407**, 633-636 (2000)
- Adachi, M., Takayanagi, R., Tomura, A., Imasaki, K., Kato, S., Goto, K., Yanase, T., Ikuyama, S., Nawata, H.: Androgen-insensitivity syndrome as a possible coactivator disease. *N. Engl. J. Med.*, **343**, 856-862 (2000)
- Suzuki, K., Yamanishi, K., Mori, O., Kamikawa, M., Andersen, B., Kato, S., Toyoda, T., Yamada, G.: Defective terminal differentiation and hypoplasia of the epidermis in mice lacking the Fgf 10 gene. *FEBS Lett.*, **481**, 53-56 (2000)
- Tajima, T., Kitagawa, H., Yokoya, S., Tachibana, K., Adachi, M., Nakae, J., Suwa, S., Kato, S., Fujieda, K.: A novel missense mutation of mineralocorticoid receptor gene in one Japanese family with a renal form of pseudohypoaldosteronism type 1. *J. Clin. Endocrinol. Metab.*, **85**, 4690-4694 (2000)
- Ohuchi, H., Hori, Y., Yamasaki, M., Harada, H., Sekine, K., Kato, S., Itoh, N.: FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. *Biochem. Biophys. Res. Commun.*, 277, 643-649 (2000)
- Yamamoto, A., Hashimoto, Y., Kohri, K., Ogata, E., Kato, S., Ikeda, K., Nakanishi, M.: Cyclin E as a coactivator of the androgen receptor. *J. Cell Biol.*, **150**, 873-879 (2000)
- Haraguchi, R., Suzuki, K., Murakami, R., Sakai, M., Kamikawa, M., Kengaku, M., Sekine, K., Kawano, H., Kato, S., Ueno, N., Yamada, G.: Molecular analysis of external genitalia formation: the role of *fibroblast growth factor (Fgf)* genes during genital tubercle formation. *Development*, **127**, 2471-2479 (2000)
- Kinuta, K., Tanaka, H., Moriwake, T., Aya, K., Kato, S., Seino, Y.: Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads. *Endocrinology*, **141**, 1317-1324 (2000)
- Endre, B., Kato, S., DeLuca, H. F.: Metabolism of 1,25-dihydroxyvitamin D₃ in vitamin D receptor-ablated mice in vivo. *Biochemistry*, **39**, 2123-2129 (2000)
- Hasegawa, Y., Fujii, K., Yamada, M., Igarashi, U., Tachibana, K., Tanaka, T., Onigata, K., Nishi, Y., Kato, S., Hasegawa, T.: Identification of novel human *GH-1* gene polymrphisms that are associated with growth hormone secretion and height. *J. Clin. Endocrinol. Metab.*, **85**, 1290-1295 (2000)
- Hiragun, T., Morita, E., Shindo, H., Tanaka, T., Kameyoshi, Y., Okabe, T., Kanno, M. and Yamamoto, S. Altered in vitro apoptosis os cultured mast cells prepared from an inbred strain of mice, NC/Kuj. *Clinical and Experimental Allergy*, 30: 433-438 (2000)

- Takagi TN, Matsui KA, Yamashita K, Ohmori H, and Yasuda M. Pathogenesis of cleft palate in mouse embryos exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). *Teratogenesis, Carcinogenesis, and Mutagenesis* 20: 73-86 (2000).
- Yamashita K, Takagi TN, Yamashita T, Yamasaki S, Okamura S, Fujii-Kuriyama Y, and Yasuda M. Involvement of Ah receptor on developmental toxicity of dioxin in mouse fetuses: sensitivity in Ahr-mutant heterozygotes. *Organohalogen Compounds* 49: 147-150 (2000).
- Hayes, J.D., Chanas, S.A., Henderson,, C.J., McMahon, M., Sun, C., Moffat, G.J., Wolf, C.R., and Yamamoto, M. The Nrf2 transcription factor contributes both to the basal expression of glutathione S-transferases in mouse liver and to their induction by the chemopreventive synthetic antioxidants, butylated hydroxyanisole and ethoxyquin. *Biochem. Soc. Trans.* 28, 33-41 (2000)
- Ishii, T., Itoh, K., Akasaka, J., Yanagawa, T., Takahashi, S., Yoshida, H., Bannai, S. and Yamamoto, M. Induction of murine intestinal and hepatic peroxiredoxin MSP23 by dietary butylated hydroxyanisole. *Carcinogenesis* **21**, 1013-1016 (2000)
- Katsuoka, F., Motohashi, H., Onodera, K., Suwabe, N., Engel J.D. and Yamamoto, M. One enhancer mediates *mafK* transcriptional activation in both hematopoietic and cardiac muscle cells. *EMBO J.* **19**, 2980-2991 (2000)
- Onodera, K., Shavit, J.A., Motohashi, H., Yamamoto, M. and Engel, J.D. Perinatal synthetic lethality and hematopoietic defects in compound *mafG::mafK* mutant mice. *EMBO J.* 19, 1335-1345 (2000)
- M. Ema, K. Hirota, J. Mimura, H. Abe, J. Yodoi, K. Sogawa, L. Poellinger and Y. Fujii-Kuriyama. Molecular mechanisms of transcription activation by HLF and HIF1 in response to hypoxia: their stabilization and redox signal induced interaction with CBP/p300. *EMBO J.* **18**: 1905-1914 (1999)
- J. Mimura, M. Ema, k. Sogawa & Y. Fujii-Kuriyama. Identification of a novel mechanism of regulation of Ah (dioxin) receptor function. *Genes Dev.* 13: 20-25 (1999)
- Yanagisawa, J., Yanagi, Y., Masuhiro, Y., Suzawa, M., Toriyabe, T., Kashiwagi, K., Watanabe, M., Kawabata, M., Miyazono, K., Kato, S.: Convergence of TGFb and vitamin D signaling pathways on SMAD proteins acting as common transcriptional co-activators. *Science*, **283**: 1317-1321 (1999)
- Masami Miyamoto, Yuri Umetsu, Hirotoshi Dosaka-Akita, Yuichi Sawamura, Jun Yokota, Hideo Kunitoh, Nobuo Nemoto, Kunio Sato, Noritaka Ariyoshi and Tetsuya Kamataki, CYP2A6 gene deletion reduces susceptibility to lung cancer, *Biochem. Biophys. Res. Commun.*, **261**: 658-660 (1999)
- Endoh, H., Maruyama, K., Masuhiro, Y., Kobayashi, Y., Goto, M., Tai, H., Yanagisawa, J., Metzger, D., Hashimoto, S., Kato, S.: Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor α. *Mol. Cell. Biol.*, 19, 5363-5372 (1999)
- Takeyama, K., Masuhiro, Y., Fuse, H., Endoh, H., Murayama, A., Kitanaka, S., Suzawa, M., Yanagisawa, J., Kato, S.: Selective interaction of vitamin D receptor with transcriptional coactivators by a vitamin D analog. *Mol. Cell. Biol.*, **19**: 1049-1055

(1999)

- Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J.D. and Yamamoto, M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the N-terminal Neh2 domain. *Genes Dev.* 13, 76-86 (1999).
- Minegishi, N., Ohta, J., Yamagiwa, H., Suzuki, N., Kawauchi, S., Zhou, Y., Takahashi, S., Hayashi, N., Engel, J.D. and Yamamoto, M. The mouse GATA-2 gene is expressed in the aorta-gonads-mesonephros region. *Blood* **93**, 4196-4207 (1999)
- Yasumasa Sasaki, Yoshiki Takahashi, Kazuo Nakayama and Tatsuya Kamataki, Cooperative regulation of CYP2C12 gene expression by signal transducer and activator of transcription 5 (STAT5) and liver-specific factor in female rats., *J. Biol. Chem.*, **274**(52): 37117-37124 (1999)
- Characterization of the murine *mafF* gene. Onodera, K., Shavit, J. A., Motohashi, H., Katsuoka, F., Akasaka, J-e, Engel, J. D. and Yamamoto, M. *J. Biol. Chem.* **274**, 21162-21169 (1999)
- Kawauchi, S., Takahashi, S., Nakajima, O., Ogino, H., Morita, M., Nishizawa, M., Yasuda, K. and Yamamoto, M. Regulation of lens fiber cell differentiation by transcription factor c-Maf. *J. Biol. Chem.* **274**, 19254-19260 (1999)
- Kobayashi, A., Itoh, E., Toki, T., Takahashi, S-i, Igarashi, K., Hayashi, N. and Yamamoto, M. Molecular cloning and functional characterization of a new CNC family transcription factor Nrf3. *J. Biol. Chem.* 274, 6443-6452 (1999)
- S. Takahata, K. Sogawa, A. Kobayashi, M. Ema, J. Mimura, N. Ozaki & Y. Fujii-Kuriyama. Transcriptionally Active Heterodimer Formation of an Arnt-like PAS Protein, Arnt3, with HIF-1, HLF, and Clock. Biochem. *Biophys. Res. Commun.* 248, 789-794(1998)
- K.Sogawa, K. Numayama-Tsuruta, M. Ema, M. Abe, H. Abe & Y. Fujii-Kuriyama. Inhibition of hypoxia-inducible factor 1 activity by nitric oxide donors in hypoxia. *Proc. Natl. Acad. Sci. USA* **95**, 7369-7373(1998)
- Y-M. Zheng, M. B. Fisher, N. Yokotani, Y. Fujii-Kuriyama & A. E. Rettie. Identification of a Meander Region Proline Residue Critical for Heme Binding to Cytochrome P450: Implications for the Catalytic Function of Human CYP4B1. *Biochemistry.* 37:12847-12851 (1998)
- F. Wang, J-x. Gao, J. Mimura, A. Kobayashi, K. Sogawa & Y. Fujii-Kuriyama. Structure and Expression of the Mouse AhR Nuclear Translocator (mArnt) Gene. *J. Biol. Chem.* **273**:24867-24873 (1998)
- W. Zhang, J. M. Shields, K. Sogawa, Y. Fujii-Kuriyama & V. W. Yang. The Gut-enriched kr pel-like Factor Suppresses the Activity of the CYP1A1 Promoter in an Sp1-dependent Fashion. *J. Biol. Chem.* **273**:17917-17925(1998)
- A. Suzuki, H. Kushida, K. Iwata, M. Watanabe, T. Nohmi, K. Fujita, F. J. Gonzalez, and T. Kamataki: Establishment of a salmonella tester strain highly sensitive to mutagenic heterocyclic amines. *Cancer Res.* **58**: 1833-1838 (1998)

H. Iwata, K. Fujita, H. Kushida, A. Suzuki, Y. Konno, K. Nakamura, A. Fujino, and T. Kamataki: High catalytic activity of human cytochrome P450 co-expressed with human NADPH-cytochrome P450 reductase in Escherichia coli. *Biochem. Pharmacol.* **55**: 1315-1325 (1998)

Hasegawam M., Tetsu, O., Kanno, R., Inoue, H., Ishihara, H., Kamiyasu, M., Taniguchi, M. and Kanno, M. Mammalian Polycomb group genes are categorized as new type of early response gene induced by B-cell receptor cross linking. *Molecular Immunology* **35**: 559-563 (1998)

Tetsu, O., Ishihara, H., Kanno, R., Kamiyasu, M., Inoue, H., Tokuhisa, T., Taniguchi, M. and Kanno, M. mel-18, a mammalian Polycomb group gene, negatively regulates cell cycle progression upon B cell antigen receptor stimulation through a cascade leading to c-myc/cdc25. *Immunity.* **9**: 439-448 (1998)

Minegishi, N., Ohta, J., Suwabe, N., Nakauchi, H., Ishihara, H., Hayashi, N. and Yamamoto, M. Alternative promoters regulate transcription of the mouse GATA-2 gene. *J. Biol. Chem.* **273**, 3625-3634 (1998)

Nagai, T., Igarashi, K., Akasaka, J., Furuyama, K., Fujita, H., Hayashi, N., Yamamoto, M. and Sassa, S. Regulation of NF-E2 activity in erythroleukemia cell differentiation. *J. Biol. Chem.* 273, 5358-5365 (1998)

Kuroha, T., Takahashi, S., Komeno, T., Itoh, K., Nagasawa, T. and Yamamoto, M. Ablation of Nrf2 function does not embellish erythroid or megakaryocyticcell lineage dysfunction caused by p45 NF-E2 gene disruption. *J.Biochem.* **123**, 376-379 (1998)

Takahashi, S., Komeno, T.,Suwabe, N., Yoh, K., Nakajima, O., Nishimura, S., Kuroha, T., Nagasawa, T.and Yamamoto, M. Role of GATA-1 in proliferation and differentiation of definitive erythroid and megakaryocytic cells in vitro. *Blood* **92**, 434-442 (1998)

Harigae, H., Takahashi, S., Suwabe, N., Ohtsu, H., Gu, L., Yang, Y., Tsai, F. Y., Kitamura, Y., Engel, J.D. and Yamamoto, M. Differential roles of GATA-1 and GATA-2 in growth and differentiation of mast cells. *Genes Cell* 3, 39-50 (1998)

Igarashi, K., Hoshino, H., Muto, A., Suwabe, N., Nishikawa, S., Nakauchi, H. and Yamamoto, M. Multivalent DNA binding complex by small Maf and Bach1 as a possible biochemical basis for _-globin locus control region holocomplex. *J. Biol. Chem.* 273, 11783-11790 (1998)

Shavit, J.A., Motohashi, H., Onodera, K., Akasaka, J-e., Yamamoto, M. and Engel, J.D. Impaired megakaryopoiesis and behavioral defects in mafG-null mutant mice. *Genes Dev.* 12, 2164-2174 (1998)

Muto, A., Hoshino, H., Madisen, L., Yanai, N., Obinata, M., Karasuyama, H., Hayashi, N., Nakauchi, H., Yamamoto, M., Groudine, M. and Igarashi, K. Identification of Bach2 as a B cell-specific partner for small Maf proteins that negatively regulates immunoglobulin heavy chain 3' enhancer. *EMBO J.* 17, 5734-5743, (1998)

Cohen-Kaminsky, S., Maouche-Chretien, L., Vitelli, L., Vinit, M.A., Blanchard, I., Yamamoto, M., Peschle, C. and Romeo, P.H. Chromatin immunoselection defines a TAL-1 target gene. *EMBO J.* **17**, 5151-5160 (1998)

Iwata, T., Kogame, K., Toki, T., Yokoyama, M., Yamamoto, M. and Ito, E. Structure and chromosome mapping of the human small maf genes MAFG and MAFK. *Cytogenet. Cell Genet.* **82**, 88-90 (1998)

Suwabe, N., Takahashi, S., Nakano, T. and Yamamoto, M. GATA-1 regulates growth and differentiation of definitive erythroid lineage cells during in vitro ES cell differentiation. *Blood* **92**, 4108-4115 (1998)

Motohashi, H., Ohta, J., Engel, J.D. and Yamamoto, M. A core region of the mafK gene IN promoter directs neuron-specific transcription in vivo. *Genes Cell.* **3**, 671-684 (1998)

Zhou, Y., Lim, K-C., Onodera, K., Takahashi, S., Ohta, J., Minegishi, N., Tsai, F-Y., Orkin, S-H., Yamamoto, M. and Engel, J.D. Rescue of the embryonic lethal hematopoietic defect reveals a critical role for GATA-2 in urogenital development. *EMBO J.* 17, 6689-6700 (1998)

Furuyama, K., Uno, R., Urabe, A., Hayashi, N., Fujita, H., Kondo, M., Sassa, S. and Yamamoto, M. R411C mutation of the ALAS2 gene encodes a pyridoxine-responsive enzyme with low activity. *British J. Haematol.* **103**, 839-841 (1998)

(2)口頭発表

①招待、口頭講演 (国内 5 件、海外 5 件)

Fujii-Kuriyama, Y., Mimura, J., Ema, M. & Sogawa, K. (東北大学), Molecular Mechanisms of Function and Regulation of Ah receptor, 内分泌かく乱物質問題に関する国際シンポジウム, 1999, 12, 11.

Fujii-Kuriyama, Y., Recent findings on structure & function of the Ah recepto 13th International Symposium on Microsomes & Drug Oxidations, Strese (Italy), 2000, 7, 9.

Fujii-Kuriyama, Y., Transcriptional function of the dioxin (aryl hydrocarbon) receptor, 1st International Symposium on Organ and cell type specificity of tumorigenesis, tumor development and tumor prevention, Main (Germany), 2001, 6, 23.

Fujii-Kuriyama, Y., Mimura, J., Sogawa, K. & Baba, T., Regulatory mechanisms of transcription activity of Ah receptor, 12th International Conference on Cytochrome P450, La Grande Motte (France), 2001, 9.

Fujii-Kuriyama, Y., Numayama-Tsuruta, K., Mimura, J. & Sogawa, K., Ah receptor potential determinant of individual difference in the drug-metabolizing capacity, 8th International Conference on Environmental Mutagens, 静岡市, 2001, 10.

藤井義明, Ah receptor as a potential determinant of individual difference in the drug-metabolizing capacity (生物の環境適応と転写因子),第30回日本環境変異原学会及び第8回国際環境変異原学会,静岡市,2001,10,23-25.

藤井義明, Ah receptor and inducible expression of cytochrome, 14th International

Symposium on Microsomes and Drug Oxidations (MDO2002), Sapporo (Japan), 2002, 7, 22-26.

藤井義明, Role of AhR in expression of biological effects of endocrine disruptors, International Congress on Hormonal Steroids and Hormones and Cancer, Fukuoka (Japan), 2002, 10, 21-25.

藤井義明, Transcriptional roles of AhR in expression of biological effects induced by endocrine disruptors, SCOPE/IUPAC 内分泌活性物質国際シンポジウム, 横浜, 2002, 11, 17-21.

藤井義明, Molecular mechanisms of transactivation of Ah receptor in the target gene expression, 13th International Conference on Cytochromes P450, Pragu (Czech Republic), 2003, 7, 2.

②ポスター発表 (国内 13 件、海外 0 件)

Hosoya, T., Oda, Y., Takahashi, S., Morita, M., kawauchi, S., Ema, M., Yamamoto, M., Fujii-Kuriyama, Y. (東北大学), Arnt2 regulates the development of secretory neurons in mouse hypothalamus with Sim1 as a dimer, 日本分子生物学会, 2000, 12, 15.

沼山恵子,十川和博,高橋智裕,和田忠士,半田宏,藤井義明(東北大学), Ahリセプ ターと Arntの ヘテロタ イマーをコアクチへ ーターと して要求する転写因子の同定,日本分子生物学会,2000,12,13.

大竹史明,武山健一,柳澤純,佐藤隆史,藤井義明,加藤茂明, ダイオキシンによる女性ホルモン撹乱作用の分子メカニズムの解析,日本分子生物学会,2000,12,13.

藤井義明、三村純正、馬場崇、十川和博,外来異物に対する生体応答のメカ ニズム,日本分子生物学会,2000,10,14.

馬場崇,三村純正,十川和博,藤井義明,AhRR遺伝子の発現制御機構の解析,日本生化学会,2000,10,13.

藤井義明, Ah受容体の機能とその調節, 第73回日本生化学会, 2000, 10.

藤井義明,アリルハイドロカーボン (ダイオキシン) 受容体の転写活性化機構とその調節,日本生化学会東北支部シンポジウム,2000,6,3.

沼山恵子 1,十川和博 1, 菊池康夫 1,半田宏 2, 藤井義明 1 (1 東北大院・生命科学・分子生命科学, 2 東工大・フロンティア), Ah リセプターがコアクティベーターとして機能する CYP1A2 遺伝子転写制御機構の解析,日本癌学会,横浜市,2001,9,26-27.

木下耕史1, 笹倉由貴江1, 十川和博1, 鈴木理2, 藤井義明1, 東北大院・生命科学・分子生命科学, 2 産総研・DNA情報), ハイポキシアで活性化する HLFの DNA 結合様式の解析, 第74回日本生化学会大会, 京都市, 2001, 10, 24-28.

菊池康夫,大澤志津江,三村純正,依馬正次,十川和博,藤井義明(東北大院・生命科学,分子生命科学,大腸菌を用いた AhR-Arnt ヘテロ二量体の発現,第 74 回日本生化学会大会,京都市,2001,10,24-28.

山下 年晴 1, 大根田 修 2, 大根田 絹子 2, 守田 匡伸 1, 山本 雅之 2, 藤井 義明 1, 腫瘍血管新生における HLF (HIF-1a like factor) の役割,第 24 回日本分子 生物学会,横浜市,2001,12,9.

山下 年晴 1, 2, 大根田 修 1, 守田 匡伸 2, 鈴木教郎 1, 山本 雅之 1, 藤井 義明 1, マウス未熟児網膜症モデルを用いた血管新生における HLF/Hif-2α転写因子の機能解析,第 25 回日本分子生物学会,横浜市,2002,12,13-14.

藤井義明,内分泌攪乱物質の生体作用発現における Ah リセプターの役割,第 26回日本医学会総会,福岡市,2003,4,6.

①招待、口頭講演 (国内 10 件、海外 1 件) 糠谷学,高橋芳樹,斎藤鉄也,Frank J Gonzalez,<u>鎌滝哲也</u>:多環芳香族炭 化水素による脂質代謝異常の分子レベルにおける発現機構の解明,日本薬

物動態学会, 第18回年会(札幌), 173, 2003.

柴原憲仁,都出健治,山崎浩史,永島理香子,伊藤圭輔,岩野俊介,高橋 芳樹,斎藤鉄也,渡辺昌,<u>鎌滝哲也</u>: CYP1B1 mRNA量を指標としたヒト におけるダイオキシン類曝露の定量的評価法の確立,日本薬物動態学会, 第18回年会(札幌),174,2003.

柴原憲仁,斎藤鉄也,鎌滝哲也:ヒトCYP1B1の細胞特異的な発現制御機構,日本トキシコロジー学会,第30回年会(相模原),226,2003.

糠谷学, 高橋芳樹, 斎藤鉄也, Frank J Gonzalez, <u>鎌滝哲也</u>: 多環芳香族炭化水素による脂質代謝異常の発現機構の分子レベルでの解明, 日本トキシコロジー学会, 第30回年会(相模原), 245, 2003.

柴原憲仁,糠谷学,高橋芳樹,Gonzalez FJ,鎌滝哲也:多環芳香族炭化水素による血液凝固カスケードの阻害について,日本薬物動態学会,第17回年会(東京),223,2002.

糠谷学, 高橋芳樹, Gonzalez FJ, <u>鎌滝哲也</u>: 多環芳香族炭化水素による PPAR□ 標的遺伝子の抑制とその分子機構, 日本トキシコロジー学会, 第29 回年会(名古屋), 226, 2002.

糠谷学, 高橋芳樹, Gonzalez FJ, <u>鎌滝哲也</u>: 多環芳香族炭化水素による脂質代謝酵素の発現抑制とその分子機構, 日本薬物動態学会, 第16回年会(神戸), 189, 2001.

糠谷学, 高橋芳樹, Gonzalez FJ, <u>鎌滝哲也</u>: 多環芳香族炭化水素による JAK-STATシグナル伝達の阻害とその分子機構, 日本癌学会, 第60回年会 (横浜),163,2001.

Manabu Nukaya, Yoshiki Takahashi, Frank J. Gonzalez and Tetsuya Kamataki, Aryl hydrocarbon receptor (AHR) target genes involved in the toxicity caused by polycyclic aromatic hydrocarbons, International Congress of Toxicology, 9th Meeting (Brisbane), 22, 2001.

糠谷学, 高橋芳樹, Gonzalez FJ, <u>鎌滝哲也</u>: 多環芳香族炭化水素による成長ホルモン応答シグナル伝達の阻害とその分子機構, 日本トキシコロジー学会,第28回年会(東京), 81, 2001.

糠谷学, 高橋芳樹, Gonzalez FJ, <u>鎌滝哲也</u>: ダイオキシン受容体の新規標的遺伝子の探索, 日本薬物動態学会, 第15回年会(福岡), 32, 2000.

②ポスター発表 (国内 6 件、海外 2 件) 糠谷学, 高橋芳樹, Gonzalez FJ, <u>鎌滝哲也</u>: 多環芳香族炭化水素による PPAR□ シグナル伝達の抑制とその分子機構, 日本分子生物学会, 第25回年 会(横浜), 944, 2002.

柴原憲仁,糠谷学,高橋芳樹,Gonzalez FJ,鎌滝哲也:多環芳香族炭化水素による血液凝固第V因子遺伝子の発現抑制とその影響,日本分子生物学会,第25回年会(横浜),944,2002.

Manabu Nukaya, Yoshiki Takahashi, Frank J. Gonzalez and <u>Tetsuya Kamataki</u>, Aryl hydrocarbon receptor-mediated suppression of PPAR α signal causedby polycyclic aromatic hydrocarbons, North American International Society for the Study of Xenobiotics, 11^{th} Meeting (Orlando), 35, 2002.

Manabu Nukaya, Yoshiki Takahashi, Frank J. Gonzalez and <u>Tetsuya Kamataki</u>, Aryl hydrocarbon receptor-mediated suppression of growth hormone signal caused by polycyclic aromatic hydrocarbons, Microsomes and Drug Oxidation, 14th International Symposium (Sapporo), 169, 2002.

糠谷学,高橋芳樹,Gonzalez FJ,<u>鎌滝哲也</u>:多環芳香族炭化水素による脂質代謝阻害の分子機構の解明,日本分子生物学会,第24回年会(横浜),78,2001.

糠谷学, 高橋芳樹, Gonzalez FJ, <u>鎌滝哲也</u>: ディファレンシャルディスプレイ法によるダイオキシン受容体の新規標的遺伝子の探索とその機能解析,日本薬学会,第121回年会(札幌),89,2001.

糠谷学, 高橋芳樹, Gonzalez FJ, <u>鎌滝哲也</u>: 多環芳香族炭化水素による脂質代謝阻害の分子機構の解明, 日本分子生物学会, 第24回年会 (横浜), 78, 2001.

糠谷学, 高橋芳樹, Gonzalez FJ, <u>鎌滝哲也</u>: ダイオキシン受容体の新規標的遺伝子の探索と機能解析, 日本分子生物学会, 第23回年会(神戸), 541, 2000.

②ポスター発表 (国内 6 件、海外 1 件) Hiroko INOUE, Ruriko SAKAI, Masaki MIYAZAKI, Teruyuki KAJIUME, Rieko KANNO, Masamoto KANNO. Alterations of thymocyte differentiation in mouse exposed to 2,3,7,8 -tetrachlorodibenzo-p-dioxin (TCDD); contribution of caspase- and bcl-2 -independent cell death. 11th international Congress of Immunology Stockholm, Sweden, 22-27,July 2001

井上洋子, 菅野理恵子, 坂井るり子, 神安雅哉, 山下敬介, 菅野雅元, ダイオキシン類による胸腺萎縮作用の解析, 第29回日本免疫学会, 平成11年12月1日~3日, 国立京都国際会館

井上洋子, 菅野理恵子, 坂井るり子, 岡村さおり, 山下敬介, 菅野雅元, ダイオキシン類による胸腺萎縮作用の解析(III), 第30回日本免疫学会, 平成12年11月14日〜16日, 仙台国際センター

井上洋子, 菅野理恵子, 坂井るり子, 岡村さおり, 山下敬介, 菅野雅元, ダイオキシン類による胸腺への影響—胸腺細胞の細胞死に関連する遺伝子群の挙動と細胞形態変化, 第31回日本免疫学会, 平成13年12月11日~13日, 大阪国際会議場

坂井るり子, 梶梅輝之, 井上洋子, 菅野理恵子, 岡村さおり, 山下敬介, 菅野雅元, ダイオキシンが及ぼす造血幹細胞への影響について。, 第31回日本免疫学会, 平成13年12月11日~13日, 大阪国際会議場

菅野雅元,井上洋子,菅野理恵子,坂井るり子,岡村さおり,山下敬介,二宮裕一,ダイオキシンによる胸腺萎縮の解析—マイクロアレイ解析及び細胞の形態変化,第32回日本免疫学会,京王プラザホテル(東京),平成14年12月4日—6日

坂井るり子,梶梅輝之,井上洋子,菅野理恵子,岡村さおり,山下敬介,菅野雅元,ダイオキシンが及ぼす造血幹細胞への影響:その2,第32回日本免疫学会,京王プラザホテル(東京),平成14年12月4日—6日

①招待、口頭講演 (国内 2 件、海外 2 件)

山本雅之, Nrf2, an adaptive response gene to oxidative stress and to che mopreventive agents., The 13th International Symposium on Micorsomes a nd Drug Oxidation, Stresa (Italy), 2000, 7, 10-14.

山本雅之, Nrf2, A transcription factor response to oxidative stress., DMW /International Society for the Study of Xenobiotics, St. Andrews, 2000, 6, 11-16.

山本雅之, Nrf2 and Keap1 regulation of antioxidative stress genes., The 10th Biennial Meeting of International Society for Free Radical Research, Antioxidant: Beyond Scavenger, Kyoto (Japan), 2000, 10, 17-20.

山本雅之, 伊東健, 若林伸直, Nrf2とKeap1による酸化ストレス応答遺伝 子制御機構, 第73回日本生化学大会シンポジウム, 2000, 10, 14.

- (3)特許出願(国内 件、海外 件)なし
- (4)新聞報道等
 - ①新聞報道

1999年12月3日読売新聞:ダイオキシン免疫系へ影響 マウス実験で確認,広 大グループ

ダイオキシンが、免疫に 関与する胸腺を萎縮させ、 リンパ球の減少や成熟異常 (免疫学)のグループがマ (免疫学)のグループがマ ウスの実験で確かめ、一日、

ダイオキシン _英クル **免疫系へ影響** ペ

マウス実験で確認

能性もあり、詳しいメカニ |疾患の一因になっている可 免疫疾患を起こすことが知 さらに未熟な細胞の割合が 口から一度だけ投与して、 どを教えるため、異常が起 の細胞を攻撃しないことな ニズムはわかっていない。 考えられるが、詳しいメカ 現れず、受容体に作用して 持たないマウスでは影響が ンパ球が減少した。 投与した場合でも、 ぼ相当する○・一舒・写を た。人間の耐容摂取量にほ る機能にも異常が見られ 増え、リンパ球を成熟させ 常時より90%も減少した。 以上投与したマウスの胸腺 る器官である胸腺の変化を 免疫反応を起こすリンパ球 ダイオキシンのTCDD? 胸腺の細胞を殺していると が正常に働くように教育す こるとリウマチなどの自己 その結果、約四十谷・ダ ダイオキシンの受容体を 菅野教授は 「アレルギー 胸腺はリンパ球に、自己 **菅野教授らは、マウス約** 数%1)

2003年5月29日毎日新聞:ダイオキシン 特定たんぱくと結合-東大教授ら解

明,女性ホルモンに異常

2003年5月29日読売新聞:ダイオキシンの環境ホルモン作用 仕組みの詳細解

明

(5) その他特記事項

なし

7. 結び

5年間の研究で達成出来なかったものは、内分泌撹乱物質に対する高感受性のモニターマウスを作ることである。これは、AhRRの欠失マウスが高感受性になると予想されたが、あまり予定通りに進めることができなかった。異物代謝第2相酵素の発現を制御するNrf2の欠失マウスは、第1相反応の生成物が蓄積するので、発癌物質などについて高感受性になる可能性がある。この点についての研究は、現在進められている。免疫についてのAhRの機能についても初めは思ったようには進まなかったが、T細胞の分化とマクロファージの発現について糸口がつかめて来たと思うので今後の進展が期待される。

予想以上に研究が進展したものは、AhRがアロマターゼ遺伝子の発現制御を通して生殖サイクルに関与していることを発見したこと、AhRとERα及びER βが相互作用してTCDDや3MCのエストロジェン作用を発揮するメカニズムが解明されたこと、AhRの作用の抑制因子としてAhRRが発見されたことで、AhRの作用はAhRRによってフィードバック阻害の調節ループが発見されたことである。5年間という長期間に渡って、研究費のみでなく、PDなどの人的援助も受けて非常に有意義な研究期間を送ることができました。また、有効な共同研究ができて、全体的には、予想以上の成果をあげることができたと思っています。科学技術振興機構に対し深甚なる感謝の意を捧げます。

※本プロジェクトのメンバーであった武山 健一氏については、同氏が所属する研究室において論文の不正行為があったことが東京大学において認定されています。 認定された不正行為には、本プロジェクトの研究成果とされた論文の一部が含まれています。詳細は、下記をご参照下さい。

http://www.u-tokyo.ac.jp/public/public01_261226_j.html

http://www.u-tokyo.ac.jp/content/400007786.pdf

http://www.jst.go.jp/osirase/20160325_oshirase-2.html